Lab-on-a-Chip System for Developing and Fluorescence Imaging a Three-Dimensional Model of Pancreatic Islets Under Flow Conditions

2021 ◽  
Vol MA2021-01 (55) ◽  
pp. 1396-1396
Author(s):  
Zbigniew Brzozka ◽  
Patrycja Sokołowska ◽  
Kamil Zukowski ◽  
Justyna Janikiewicz ◽  
Ekzbieta Jastrzebska ◽  
...  
2020 ◽  
Vol MA2020-01 (27) ◽  
pp. 1984-1984
Author(s):  
Zbigniew Brzozka ◽  
Patrycja Sokolowska ◽  
Kamil Zukowski ◽  
Justyna Janikiewicz ◽  
Elzbieta Jastrzebska ◽  
...  

2008 ◽  
Vol 5 (26) ◽  
pp. 1067-1075 ◽  
Author(s):  
G Coppola ◽  
C Caro

Arterial geometry is commonly non-planar and associated with swirling blood flow. In this study, we examine the effect of arterial three-dimensionality on the distribution of wall shear stress (WSS) and the mass transfer of oxygen from the blood to the vessel wall in a U-bend, by modelling the blood vessels as either cylindrical or helical conduits. The results show that under physiological flow conditions, three-dimensionality can reduce both the range and extent of low WSS regions and substantially increase oxygen flux through the walls. The Sherwood number and WSS distributions between the three-dimensional helical model and a human coronary artery show remarkable qualitative agreement, implying that coronary arteries may potentially be described with a relatively simple idealized three-dimensional model, characterized by a small number of well-defined geometric parameters. The flow pattern downstream of a planar bend results in separation of the Sh number and WSS effects, a finding that implies means of investigating them individually.


Skull Base ◽  
2008 ◽  
Vol 18 (S 01) ◽  
Author(s):  
Akio Morita ◽  
Toshikazu Kimura ◽  
Shigeo Sora ◽  
Kengo Nishimura ◽  
Hisayuki Sugiyama ◽  
...  

2019 ◽  
Vol 10 (6) ◽  
pp. 1382-1394
Author(s):  
R. Vijayalakshmi ◽  
V. K. Soma Sekhar Srinivas ◽  
E. Manjoolatha ◽  
G. Rajeswari ◽  
M. Sundaramurthy

Sign in / Sign up

Export Citation Format

Share Document