Asymmetric Impact of External Pressure on Li/Solid-Electrolyte Interfacial Stability

2021 ◽  
Vol MA2021-02 (20) ◽  
pp. 731-731
Author(s):  
Ashutosh Agrawal ◽  
Saeed Yari ◽  
Mohammed Mezaal ◽  
Maarten Debucquoy ◽  
Maarten Mees ◽  
...  
Nano Letters ◽  
2016 ◽  
Vol 16 (11) ◽  
pp. 7030-7036 ◽  
Author(s):  
Cheng Ma ◽  
Yongqiang Cheng ◽  
Kuibo Yin ◽  
Jian Luo ◽  
Asma Sharafi ◽  
...  

2016 ◽  
Vol 4 (2) ◽  
pp. 1600377 ◽  
Author(s):  
Jingchao Chai ◽  
Zhihong Liu ◽  
Jun Ma ◽  
Jia Wang ◽  
Xiaochen Liu ◽  
...  

InfoMat ◽  
2021 ◽  
Author(s):  
Zhenglin Hu ◽  
Chen Wang ◽  
Chao Wang ◽  
Bingbing Chen ◽  
Chunpeng Yang ◽  
...  

2020 ◽  
Author(s):  
Ankit Verma ◽  
Hiroki Kawkami ◽  
Hiroyuki Wada ◽  
Anna Hirowatari ◽  
Nobuhisa Ikeda ◽  
...  

Interfacial deposition stability at the lithium metal-solid electrolyte interface in all solid-state batteries (ASSB) is governed by the stress-transport-electrochemistry coupling in conjunction with the polycrystalline/amorphous solid electrolyte architecture. In this work, we delineate the optimal solid electrolyte microstructure comprising of grains, grain boundary and voids possessing desirable ionic conductivity and elastic modulus for superior transport and strength. An analytical formalism is provided to discern the impact of external “stack” pressure induced mechanical stress on electrodeposition stability; stress magnitude obtained are in the megapascal range considerably diminishing the stress-kinetics effects. For experimental stack pressures ranging up to 10 MPa, the impact of stress on reaction kinetics is negligibly small and electrolyte transport overpotentials dictate electrodeposition stability. We detail the deposition stability phase map as a function of solid electrolyte to Li metal shear modulus and molar volume ratios under varying operating conditions including external pressure, surface roughness, applied current density and ambient temperature. High current density operation with stable deposition can be ensured with ample external pressure, high temperature and low surface roughness operation for low shear modulus ratio of the solid electrolyte to Li metal. <br>


2020 ◽  
Vol MA2020-02 (5) ◽  
pp. 1021-1021
Author(s):  
Beniamin Zahiri ◽  
Arghya Patra ◽  
Paul V Braun ◽  
Chadd Kiggins ◽  
John B. Cook

Sign in / Sign up

Export Citation Format

Share Document