scholarly journals Mechanisms underlying activation of transient BK current in rabbit urethral smooth muscle cells and its modulation by IP3-generating agonists

2013 ◽  
Vol 305 (6) ◽  
pp. C609-C622 ◽  
Author(s):  
Barry D. Kyle ◽  
Eamonn Bradley ◽  
Roddy Large ◽  
Gerard P. Sergeant ◽  
Noel G. McHale ◽  
...  

We used the perforated patch-clamp technique at 37°C to investigate the mechanisms underlying the activation of a transient large-conductance K+ (tBK) current in rabbit urethral smooth muscle cells. The tBK current required an elevation of intracellular Ca2+, resulting from ryanodine receptor (RyR) activation via Ca2+-induced Ca2+ release, triggered by Ca2+ influx through L-type Ca2+ (CaV) channels. Carbachol inhibited tBK current by reducing Ca2+ influx and Ca2+ release and altered the shape of spike complexes recorded under current-clamp conditions. The tBK currents were blocked by iberiotoxin and penitrem A (300 and 100 nM, respectively) and were also inhibited when external Ca2+ was removed or the CaV channel inhibitors nifedipine (10 μM) and Cd2+ (100 μM) were applied. The tBK current was inhibited by caffeine (10 mM), ryanodine (30 μM), and tetracaine (100 μM), suggesting that RyR-mediated Ca2+ release contributed to the activation of the tBK current. When IP3 receptors (IP3Rs) were blocked with 2-aminoethoxydiphenyl borate (2-APB, 100 μM), the amplitude of the tBK current was not reduced. However, when Ca2+ release via IP3Rs was evoked with phenylephrine (1 μM) or carbachol (1 μM), the tBK current was inhibited. The effect of carbachol was abolished when IP3Rs were blocked with 2-APB or by inhibition of muscarinic receptors with the M3 receptor antagonist 4-diphenylacetoxy- N-methylpiperidine methiodide (1 μM). Under current-clamp conditions, bursts of action potentials could be evoked with depolarizing current injection. Carbachol reduced the number and amplitude of spikes in each burst, and these effects were reduced in the presence of 2-APB. In the presence of ryanodine, the number and amplitude of spikes were also reduced, and carbachol was without further effect. These data suggest that IP3-generating agonists can modulate the electrical activity of rabbit urethral smooth muscle cells and may contribute to the effects of neurotransmitters on urethral tone.

2000 ◽  
Vol 279 (5) ◽  
pp. C1327-C1335 ◽  
Author(s):  
H. M. Toland ◽  
K. D. McCloskey ◽  
K. D. Thornbury ◽  
N. G. McHale ◽  
M. A. Hollywood

Freshly dispersed sheep mesenteric lymphatic smooth muscle cells were studied at 37°C using the perforated patch-clamp technique with Cs+- and K+-filled pipettes. Depolarizing steps evoked currents that consisted ofl-type Ca2+ [ I Ca(L)] current and a slowly developing current. The slow current reversed at 1 ± 1.5 mV with symmetrical Cl− concentrations compared with 23.2 ± 1.2 mV ( n = 5) and −34.3 ± 3.5 mV ( n = 4) when external Cl− was substituted with either glutamate (86 mM) or I− (125 mM). Nifedipine (1 μM) blocked and BAY K 8644 enhanced I Ca(L), the slow-developing sustained current, and the tail current. The Cl− channel blocker anthracene-9-carboxylic acid (9-AC) reduced only the slowly developing inward and tail currents. Application of caffeine (10 mM) to voltage-clamped cells evoked currents that reversed close to the Cl− equilibrium potential and were sensitive to 9-AC. Small spontaneous transient depolarizations and larger action potentials were observed in current clamp, and these were blocked by 9-AC. Evoked action potentials were triphasic and had a prominent plateau phase that was selectively blocked by 9-AC. Similarly, fluid output was reduced by 9-AC in doubly cannulated segments of spontaneously pumping sheep lymphatics, suggesting that the Ca2+-activated Cl− current plays an important role in the electrical activity underlying spontaneous activity in this tissue.


2003 ◽  
Vol 285 (3) ◽  
pp. H1347-H1355 ◽  
Author(s):  
Jin Han ◽  
Nari Kim ◽  
Hyun Joo ◽  
Euiyong Kim

Although ketamine and Ca2+-activated K+ (KCa) channels have been implicated in the contractile activity regulation of cerebral arteries, no studies have addressed the specific interactions between ketamine and the KCa channels in cerebral arteries. The purpose of this study was to examine the direct effects of ketamine on KCa channel activities using the patch-clamp technique in single-cell preparations of rabbit middle cerebral arterial smooth muscle. We tested the hypothesis that ketamine modulates the KCa channel activity of the cerebral arterial smooth muscle cells of the rabbit. Vascular myocytes were isolated from rabbit middle cerebral arteries using enzymatic dissociation. Single KCa channel activities of smooth muscle cells from rabbit cerebral arteries were recorded using the patch-clamp technique. In the inside-out patches, ketamine in the micromolar range inhibited channel activity with a half-maximal inhibition of the ketamine conentration value of 83.8 ± 12.9 μM. The Hill coefficient was 1.2 ± 0.3. The slope conductance of the current-voltage relationship was 320.1 ± 2.0 pS between 0 and +60 mV in the presence of ketamine and symmetrical 145 mM K+. Ketamine had little effect on either the voltage-dependency or open- and closed-time histograms of KCa channel. The present study clearly demonstrates that ketamine inhibits KCa channel activities in rabbit middle cerebral arterial smooth muscle cells. This inhibition of KCa channels may represent a mechanism for ketamine-induced cerebral vasoconstriction.


2005 ◽  
Vol 288 (4) ◽  
pp. G832-G841 ◽  
Author(s):  
Yukari Takeda ◽  
Sean M. Ward ◽  
Kenton M. Sanders ◽  
Sang Don Koh

In the tunica muscularis of the gastrointestinal (GI) tract, gap junctions form low-resistance pathways between pacemaker cells known as interstitial cells of Cajal (ICCs) and between ICC and smooth muscle cells. Coupling via these junctions facilitates electrical slow-wave propagation and responses of smooth muscle to enteric motor nerves. Glycyrrhetinic acid (GA) has been shown to uncouple gap junctions, but previous studies have shown apparent nonspecific effects of GA in a variety of tissues. We tested the effects of GA using isometric force measurements, intracellular microelectrode recordings, the patch-clamp technique, and the spread of Lucifer yellow within cultured ICC networks. In murine small intestinal muscles, β-GA (10 μM) decreased phasic contractions and depolarized resting membrane potential. Preincubation of GA inhibited the spread of Lucifer yellow, increased input resistance, and decreased cell capacitance in ICC networks, suggesting that GA uncoupled ICCs. In patch-clamp experiments of isolated jejunal myocytes, GA significantly decreased L-type Ca2+ current in a dose-dependent manner without affecting the voltage dependence of this current. The IC50 for Ca2+ currents was 1.9 μM, which is lower than the concentrations used to block gap junctions. GA also significantly increased large-conductance Ca2+-activated K+ currents but decreased net delayed rectifier K+ currents, including 4-aminopyridine and tetraethylammonium-resistant currents. In conclusion, the reduction of phasic contractile activity of GI muscles by GA is likely a consequence of its inhibitory effects on gap junctions and voltage-dependent Ca2+ currents. Membrane depolarization may be a consequence of uncoupling effects of GA on gap junctions between ICCs and smooth muscles and inhibition of K+ conductances in smooth muscle cells.


1988 ◽  
Vol 255 (3) ◽  
pp. H410-H418 ◽  
Author(s):  
J. Sadoshima ◽  
N. Akaike ◽  
H. Tomoike ◽  
H. Kanaide ◽  
M. Nakamura

Electrical and pharmacological properties of the single Ca-activated K channel in cultured smooth muscle cells (SMC) of the rat aorta were studied with the patch-clamp technique. The Ca-activated K channel had a slope conductance (gamma K) of 135 +/- 2 pS (mean +/- SE; n = 5) in symmetrical 142 mM K solutions. The reversal potentials show a 56-mV change for a 10-fold change in the external K concentration. Probability of the channel opening increased when the intracellular Ca concentration ([Ca]i) was increased over 10(-7) M or the membrane was depolarized. The channel was blocked by either external tetraethylammonium (TEA, 10–30 mM) or by internal Ba (1–5 mM). Channel activities were characterized by burst-like openings. Open-time histogram was fitted with a single exponential (tau = 1.3 ms at +10 mV and 10(-7) M [Ca]i), whereas the closed-time histogram was fitted with two exponentials (tau 1 = 0.7 ms and tau 2 = 111 ms). The permeability ratio for monovalent cations calculated with the Goldman-Hodgkin-Katz equation was K:Rb:Na = 1:0.7: less than 0.01. We conclude from these observations that the Ca-activated K channel in cultured SMC of the rat aorta is characterized by a middle size gamma K, activation by [Ca]i increase and depolarization, relatively low sensitivity to TEA, and high selectivity for K ions.


2013 ◽  
Vol 1 (1) ◽  
pp. 9-13
Author(s):  
K Upadhyay-Dhungel ◽  
CJ Kim ◽  
A Dhungel

Background and objectives: Magnesium is established as a neuro-protective agent and now also known as a vasodilator. It has been known for treating vasospasm following subarachnoid hemorrhage. However, its action mechanism in cerebral vascular relaxation is not clear. Potassium channels play a pivotal role in the relaxation of smooth muscle cells. To investigate their role in magnesium-induced relaxation of basilar smooth muscle cells, we examined the effect of magnesium on potassium channels using the patch clamp technique on cells from rabbit basilar artery. Material and Methods: Fresh smooth muscle cells were isolated from the basilar artery by enzyme treatment. Whole cell current recording was done using patch-clamp technique. Appropriate bath solution was used to have potassium current. The effect of Magnesium was observed and to identify the potassium (K+) channel involved in the magnesium-induced currents, different potassium channel blockers were used. Results: Magnesium increased the step pulse-induced outward K+ currents by more than fortyfive percent over control level (p<0.01). The outward K+ current was decreased significantly by application of tetraethylammonium, a non-specific K+ channel blocker, and by iberiotoxin, a largeconductance Ca2+-activated K+ (BKCa) channel blocker, but was not inhibited by glibenclamide an ATP-sensitive K+ (KATP) channel blocker. Magnesium failed to increase the outward K+ currents in the presence of IBX. Conclusion: These results demonstrate that calcium dependent pottassium (BKCa) channels has role in magnesium induced vascular relaxation in rabbit basilar smooth muscle cells and needs to be worked out for human. DOI: http://dx.doi.org/10.3126/jmcjms.v1i1.7880 Janaki Medical College Journal of Medical Sciences (2013) Vol. 1 (1):9-13


2010 ◽  
Vol 299 (2) ◽  
pp. C279-C288 ◽  
Author(s):  
Albert L. Gonzales ◽  
Gregory C. Amberg ◽  
Scott Earley

The melastatin transient receptor potential (TRP) channel TRPM4 is a critical regulator of vascular smooth muscle cell membrane potential and contractility. Activation of the channel is Ca2+-dependent, but prolonged exposure to high (>1 μM) levels of intracellular Ca2+ causes rapid (within ∼2 min) desensitization of TRPM4 currents under conventional whole cell and inside-out patch-clamp conditions. The goal of the present study was to establish a novel method to record sustained TRPM4 currents in smooth muscle cells under near-physiological conditions. Using the amphotericin B-perforated patch-clamp technique, we recorded and characterized sustained (up to 30 min) transient inward cation currents (TICCs) in freshly isolated cerebral artery myocytes. In symmetrical cation solutions, TICCs reversed at 0 mV and had an apparent unitary conductance of 25 pS. Replacement of extracellular Na+ with the nonpermeable cation N-methyl-d-glucamine abolished the current. TICC activity was attenuated by the TRPM4 blockers fluflenamic acid and 9-phenanthrol. Selective silencing of TRPM4 expression using small interfering RNA diminished TICC activity, suggesting that the molecular identity of the responsible ion channel is TRPM4. We used the perforated patch-clamp method to test the hypothesis that TRPM4 is activated by intracellular Ca2+ signaling events. We found that TICC activity is independent of Ca2+ influx and ryanodine receptor activity but is attenuated by sarco(endo)plasmic reticulum Ca2+-ATPase inhibition and blockade of inositol 1,4,5-trisphosphate receptor-mediated Ca2+ release from the sarcoplasmic reticulum. Our findings suggest that TRPM4 channels in cerebral artery myocytes are regulated by Ca2+ release from inositol 1,4,5-trisphosphate receptor on the sarcoplasmic reticulum.


2011 ◽  
Vol 301 (5) ◽  
pp. C1186-C1200 ◽  
Author(s):  
B. Kyle ◽  
E. Bradley ◽  
S. Ohya ◽  
G. P. Sergeant ◽  
N. G. McHale ◽  
...  

We have characterized the native voltage-dependent K+ (Kv) current in rabbit urethral smooth muscle cells (RUSMC) and compared its pharmacological and biophysical properties with Kv2.1 and Kv2.2 channels cloned from the rabbit urethra and stably expressed in human embryonic kidney (HEK)-293 cells (HEKKv2.1 and HEKKv2.2). RUSMC were perfused with Hanks′ solution at 37°C and studied using the patch-clamp technique with K+-rich pipette solutions. Cells were bathed in 100 nM Penitrem A (Pen A) to block large-conductance Ca2+-activated K+ (BK) currents and depolarized to +40 mV for 500 ms to evoke Kv currents. These were unaffected by margatoxin, κ-dendrotoxin, or α-dendrotoxin (100 nM, n = 3–5) but were blocked by stromatoxin-1 (ScTx, IC50 ∼130 nM), consistent with the idea that the currents were carried through Kv2 channels. RNA was detected for Kv2.1, Kv2.2, and the silent subunit Kv9.3 in urethral smooth muscle. Immunocytochemistry showed membrane staining for both Kv2 subtypes and Kv9.3 in isolated RUSMC. HEKKv2.1 and HEKKv2.2 currents were blocked in a concentration-dependent manner by ScTx, with estimated IC50 values of ∼150 nM (Kv2.1, n = 5) and 70 nM (Kv2.2, n = 6). The mean half-maximal voltage ( V1/2) of inactivation of the USMC Kv current was −56 ± 3 mV ( n = 9). This was similar to the HEKKv2.1 current (−55 ± 3 mV, n = 13) but significantly different from the HEKKv2.2 currents (−30 ± 3 mV, n = 11). Action potentials (AP) evoked from RUSMC studied under current-clamp mode were unaffected by ScTx. However, when ScTx was applied in the presence of Pen A, the AP duration was significantly prolonged. Similarly, ScTx increased the amplitude of spontaneous contractions threefold, but only after Pen A application. These data suggest that Kv2.1 channels contribute significantly to the Kv current in RUSMC.


Sign in / Sign up

Export Citation Format

Share Document