vascular relaxation
Recently Published Documents


TOTAL DOCUMENTS

404
(FIVE YEARS 45)

H-INDEX

47
(FIVE YEARS 5)

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Huan Liu ◽  
Shujuan Chu ◽  
Zhilin Wu

Abstract Background Toll-like receptor 4 (TLR4) is a pattern recognition receptor of the innate immune system. TLR4 contributes to many aging-related chronic diseases. However, whether TLR4 is involved in cardiovascular injury during the aging process has not been investigated. Methods The effects of TLR4 on the cardiovascular system of aged mice were investigated in TLR4−/− mice. An intraperitoneal glucose tolerance test (IPGTT) and insulin sensitivity test (IST) were conducted to evaluate global insulin sensitivity. Echocardiography was used to measure cardiac structure and performance. An isolated artery ring assay was used to measure the vasodilator function of the thoracic aorta. The inflammatory response was reflected by the serum concentration of cytokines. Results TLR4 expression increased in the hearts and aortas of mice in an age-dependent manner. Loss of TLR4 increased insulin sensitivity in aged mice. Moreover, loss of TLR4 improved cardiac performance and endothelium-dependent vascular relaxation in aged mice. Importantly, the increases in serum inflammatory cytokines and oxidative stress in the heart and aorta were also inhibited by TLR4 deficiency. Conclusion In summary, loss of TLR4 improved cardiac performance and endothelium-dependent vascular relaxation in aged mice. The reduced inflammatory responses and oxidative stress may be the reason for the protective effects of TLR4 deficiency during aging. Our study indicates that targeting TLR4 is a potential therapeutic strategy for preventing aging-related cardiovascular disease.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Javad Habibi ◽  
Vincent G DeMarco ◽  
Dongqing Chen ◽  
Jack L. Hulse ◽  
Adam Whaley-connell ◽  
...  

Interactions between over-nutrition and abnormal exosome release impact insulin sensitivity and the development of cardiovascular disease (CVD). Recent data have shown that exosomes can be released from various cell types, including adipocytes and vascular cells, and that they exist in body fluids and tissues functioning as mediators of cell-cell communication. However, the specific role of exosomes in diet-induced excessive vascular stiffness and hypertension has not been explored. Accordingly, we hypothesized that abnormal release of exosomes contributes to western diet (WD)- induced aortic stiffening and impaired vascular diastolic relaxation. We further posited that GW4869, an antagonist of neutral sphingomyelinase 2 (nSMase2) which promotes exosome production and release, would prevent WD-induced aortic stiffening and impaired vascular relaxation. Six week-old female C57BL/6L mice were fed a mouse chow (CD) or WD containing excess fat (46%) and fructose (17.5%) for 16 weeks with or without GW4849. To this point, 200 μl of 0.3 mg/mL GW4869 in 0.9% normal saline (60 μg/mouse; 2-2.5 μg/g body weight) was injected intraperitoneally every 48 hours for 12 weeks. 16 weeks of WD induced an increase of aortic stiffness as examined by pulse wave velocity (PWV) and impaired the aortic vasodilation responses to acetylcholine (Ach) and sodium nitroprusside (SNP) (10 -9 -10 -4 mol/L). However, GW4869 treatment prevented the WD-induced excessive aortic stiffness, as well as impairment of endothelium dependent/independent vascular relaxation. There were no significant differences in blood pressure between each group examined by tail cuff blood pressure measurement. These findings support the hypothesis that abnormal release of exosomes play an important role in WD-induced excessive aortic stiffness, impaired vascular relaxation and CVD in diet-induced obesity.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1308
Author(s):  
Ana Asenjo-Bueno ◽  
Elena Alcalde-Estévez ◽  
Mariam El Assar ◽  
Gemma Olmos ◽  
Patricia Plaza ◽  
...  

Aging impairs vascular function, but the mechanisms involved are unknown. The aim of this study was to analyze whether aging-related hyperphosphatemia is implied in this effect by elucidating the role of oxidative stress. C57BL6 mice that were aged 5 months (young) and 24 months (old), receiving a standard (0.6%) or low-phosphate (0.2%) diet, were used. Isolated mesenteric arteries from old mice showed diminished endothelium-dependent vascular relaxation by the down-regulation of NOS3 expression, increased inflammation and increased fibrosis in isolated aortas, compared to those isolated from young mice. In parallel, increased Nox4 expression and reduced Nrf2, Sod2-Mn and Gpx1 were found in the aortas from old mice, resulting in oxidant/antioxidant imbalance. The low-phosphate diet improved vascular function and oxidant/antioxidant balance in old mice. Mechanisms were analyzed in endothelial (EC) and vascular smooth muscle cells (SMCs) treated with the phosphate donor ß-glycerophosphate (BGP). In EC, BGP increased Nox4 expression and ROS production, which reduced NOS3 expression via NFκB. BGP also increased inflammation in EC. In SMC, BGP increased Collagen I and fibronectin expression by priming ROS production and NFκB activity. In conclusion, hyperphosphatemia reduced endothelium-dependent vascular relaxation and increased inflammation and vascular fibrosis through an impairment of oxidant/antioxidant balance in old mice. A low-phosphate diet achieved improvements in the vascular function in old mice.


2021 ◽  
Vol 22 (16) ◽  
pp. 8861
Author(s):  
Angela Corvino ◽  
Ida Cerqua ◽  
Alessandra Lo Bianco ◽  
Giuseppe Caliendo ◽  
Ferdinando Fiorino ◽  
...  

S1P is the final product of sphingolipid metabolism, which interacts with five widely expressed GPCRs (S1P1-5). Increasing numbers of studies have indicated the importance of S1P3 in various pathophysiological processes. Recently, we have identified a pepducin (compound KRX-725-II) acting as an S1P3 receptor antagonist. Here, aiming to optimize the activity and selectivity profile of the described compound, we have synthesized a series of derivatives in which Tyr, in position 4, has been substituted with several natural aromatic and unnatural aromatic and non-aromatic amino acids. All the compounds were evaluated for their ability to inhibit vascular relaxation induced by KRX-725 (as S1P3 selective pepducin agonist) and KRX-722 (an S1P1-selective pepducin agonist). Those selective towards S1P3 (compounds V and VII) were also evaluated for their ability to inhibit skeletal muscle fibrosis. Finally, molecular dynamics simulations were performed to derive information on the preferred conformations of selective and unselective antagonists.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mi Hyeon Hong ◽  
Hye Yoom Kim ◽  
Youn Jae Jang ◽  
Se Won Na ◽  
Byung Hyuk Han ◽  
...  

In this study, we evaluated the effect of a traditional herbal formula, Ma Huang Tang (MHT), on blood pressure and vasodilation in a rat model of NG‐nitro‐L‐arginine methylester- (L-NAME-) induced hypertension. We found that MHT-induced vascular relaxation in a dose-dependent manner in rat aortas pretreated with phenylephrine. However, pretreatment of endothelium-intact aortic rings with L‐NAME, an inhibitor of nitric oxide synthesis (NOS), or 1H‐[1, 2, 4]‐oxadiazole‐[4, 3‐α]‐quinoxalin‐1‐one (ODQ), an inhibitor of soluble guanylyl cyclase, significantly abolished vascular relaxation induced by MHT. MHT also increased the production of guanosine 3′,5′-cyclic monophosphate (cGMP) in the aortic rings pretreated with L-NAME or ODQ. To examine the in vivo effects of MHT, Sprague Dawley rats were treated with 40 mg/kg/day L-NAME for 3 weeks, followed by administration of 50 or 100 mg/kg/day MHT for 2 weeks. MHT was found to significantly normalize systolic blood pressure and decreased intima-media thickness in aortic sections of rats treated with L-NAME compared to that of rats treated with L-NAME alone. MHT also restored the L-NAME-induced decrease in vasorelaxation response to acetylcholine and endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) expression. Furthermore, MHT promoted the recovery of renal function, as indicated by osmolality, blood urea nitrogen (BUN) levels, and creatinine clearance. These results suggest that MHT-induced relaxation in the thoracic aorta is associated with activation of the nitric oxide/cGMP pathway. Furthermore, it provides new therapeutic insights into the regulation of blood pressure and renal function in hypertensive patients.


2021 ◽  
Vol 22 (8) ◽  
pp. 4179
Author(s):  
Dominik S. Skiba ◽  
Piotr Szczepaniak ◽  
Mateusz Siedliński ◽  
Piotr Poznański ◽  
Marzena Łazarczyk ◽  
...  

The opioid system is well-known for its role in modulating nociception and addiction development. However, there are premises that the endogenous opioid system may also affect blood pressure. The main goal of the present study was to determine the impact of different endogenous opioid system activity and its pharmacological blockade on blood pressure. Moreover, we examined the vascular function in hyper- and hypoactive states of the opioid system and its pharmacological modification. In our study, we used two mouse lines which are divergently bred for high (HA) and low (LA) swim stress-induced analgesia. The obtained results indicated that individuals with low endogenous opioid system activity have higher basal blood pressure compared to those with a hyperactive opioid system. Additionally, naloxone administration only resulted in the elevation of blood pressure in HA mice. We also showed that the hypoactive opioid system contributes to impaired vascular relaxation independent of endothelium, which corresponded with decreased guanylyl cyclase levels in the aorta. Together, these data suggest that higher basal blood pressure in LA mice is a result of disturbed mechanisms in vascular relaxation in smooth muscle cells. We believe that a novel mechanism which involves endogenous opioid system activity in the regulation of blood pressure will be a promising target for further studies in hypertension development.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Celio Damacena De Angelis ◽  
Daniel W Nuno ◽  
Olha Koval ◽  
Kathryn G Lamping ◽  
Isabella M Grumbach

Introduction: The Ca2+/Calmodulin-dependent Kinase II (CaMKII) is present in mitochondria and cytosol. In mitochondria, it regulates the mitochondrial Ca 2+ uptake via the mitochondrial Ca2+ uniporter. Since endothelial nitric oxide synthase activity is regulated by intracellular [Ca2+], we hypothesized that it affects cytosolic Ca2+, NO production and ACh-dependent vasodilation. Hypothesis: Inhibition of mitochondrial CaMKII in endothelium increases the cytosolic [Ca2+], and decreases vasorelaxation by Acetylcholine. Methods: CaMKII in mitochondria was inhibited through expression of the mitochondria-targeted CaMKII inhibitor peptide (mito-CaMKIIN) in a novel transgenic mouse model (endo-mtCaMKIIN) in endothelial cells only or delivered by adenoviral transduction (Ad-mtCaMKIIN) in human Aortic Endothelium cells (HAEC). In HAEC, cytosolic Ca2+ levels (by FURA-2 AM), eNOS activation and NOx levels were measured. Results: The basal Ca2+ levels were higher in the cytosol of mitoCaMKIIN cells (1.08 ± 0.02 Fura-2 ratio normalized by control, p<0.05). Thapsigargin-induced ER Ca 2+ release was significantly higher with mitoCaMKIIN (AUC 0.252 ± 0.027 versus 0.112 ± 0.01275, p<0.05), whereas cytosolic Ca 2+ levels after ACh were reduced (AUC 0.191 ± 0.025 versus 0.435 ± 0.054). Higher levels of phosphorylation of eNOS at Ser1177 and Thr495 sites were seen at baseline. The concentration-response curve of vascular relaxation to acetylcholine and SNP shifted to the right (p<0.05) in mesenteric resistance artery of mitoCaMKIIN mice. Conclusions: The inhibition of mitochondrial CaMKII in the endothelium increases the cytosolic levels, endoplasmic reticulum storage of calcium and eNOS phosphorylation. However, there are lower calcium release and lower sensitivity to acetylcholine and SNP.


2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Natalya Dorofeyeva ◽  
Konstantin Drachuk ◽  
Rajasekaran Rajkumar ◽  
Omkar Sabnis ◽  
Vadim Sagach

Sign in / Sign up

Export Citation Format

Share Document