Functional analysis of the R1086H malignant hyperthermia mutation in the DHPR reveals an unexpected influence of the III-IV loop on skeletal muscle EC coupling

2004 ◽  
Vol 287 (4) ◽  
pp. C1094-C1102 ◽  
Author(s):  
Regina G. Weiss ◽  
Kristen M. S. O’Connell ◽  
Bernhard E. Flucher ◽  
Paul D. Allen ◽  
Manfred Grabner ◽  
...  

Malignant hyperthermia (MH) is an inherited pharmacogenetic disorder caused by mutations in the skeletal muscle ryanodine receptor (RyR1) and the dihydropyridine receptor (DHPR) α1S-subunit. We characterized the effects of an MH mutation in the DHPR cytoplasmic III-IV loop of α1S (R1086H) on DHPR-RyR1 coupling after reconstitution in dysgenic (α1S null) myotubes. Compared with wild-type α1S, caffeine-activated Ca2+ release occurred at approximately fivefold lower concentrations in nonexpressing and R1086H-expressing myotubes. Although maximal voltage-gated Ca2+ release was similar in α1S- and R1086H-expressing myotubes, the voltage dependence of Ca2+ release was shifted ∼5 mV to more negative potentials in R1086H-expressing myotubes. Our results demonstrate that α1S functions as a negative allosteric modulator of release channel activation by caffeine/voltage and that the R1086H MH mutation in the intracellular III-IV linker disrupts this negative regulatory influence. Moreover, a low caffeine concentration (2 mM) caused a similar shift in voltage dependence of Ca2+ release in α1S- and R1086H-expressing myotubes. Compared with α1S-expressing myotubes, maximal L channel conductance ( Gmax) was reduced in R1086H-expressing myotubes (α1S 130 ± 10.2, R1086H 88 ± 6.8 nS/nF; P < 0.05). The decrease in Gmax did not result from a change in retrograde coupling with RyR1 as maximal conductance-charge movement ratio ( Gmax/Qmax) was similar in α1S- and R1086H-expressing myotubes and a similar decrease in Gmax was observed for an analogous mutation engineered into the cardiac L channel (R1217H). In addition, both R1086H and R1217H DHPRs targeted normally and colocalized with RyR1 in sarcoplasmic reticulum (SR)-sarcolemmal junctions. These results indicate that the R1086H MH mutation in α1S enhances RyR1 sensitivity to activation by both endogenous (voltage sensor) and exogenous (caffeine) activators.

2001 ◽  
Vol 21 (2) ◽  
pp. 155-168 ◽  
Author(s):  
Charles F. Louis ◽  
Edward M. Balog ◽  
Bradley R. Fruen

Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle characterized by muscle contracture and life-threatening hypermetabolic crisis following exposure to halogenated anesthetics and depolarizing muscle relaxants during surgery. Susceptibility to MH results from mutations in Ca2+ channel proteins that mediate excitation–contraction (EC) coupling, with the ryanodine receptor Ca2+ release channel (RyR1) representing the major locus. Here we review recent studies characterizing the effects of MH mutations on the sensitivity of the RyR1 to drugs and endogenous channel effectors including Ca2+ and calmodulin. In addition, we present a working model that incorporates these effects of MH mutations on the isolated RyR1 with their effects on the physiologic mechanism that activates Ca2+ release during EC coupling in intact muscle.


2015 ◽  
Vol 146 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Donald Beqollari ◽  
Christin F. Romberg ◽  
Dilyana Filipova ◽  
Ulises Meza ◽  
Symeon Papadopoulos ◽  
...  

In skeletal muscle, excitation–contraction (EC) coupling requires depolarization-induced conformational rearrangements in L-type Ca2+ channel (CaV1.1) to be communicated to the type 1 ryanodine-sensitive Ca2+ release channel (RYR1) of the sarcoplasmic reticulum (SR) via transient protein–protein interactions. Although the molecular mechanism that underlies conformational coupling between CaV1.1 and RYR1 has been investigated intensely for more than 25 years, the question of whether such signaling occurs via a direct interaction between the principal, voltage-sensing α1S subunit of CaV1.1 and RYR1 or through an intermediary protein persists. A substantial body of evidence supports the idea that the auxiliary β1a subunit of CaV1.1 is a conduit for this intermolecular communication. However, a direct role for β1a has been difficult to test because β1a serves two other functions that are prerequisite for conformational coupling between CaV1.1 and RYR1. Specifically, β1a promotes efficient membrane expression of CaV1.1 and facilitates the tetradic ultrastructural arrangement of CaV1.1 channels within plasma membrane–SR junctions. In this paper, we demonstrate that overexpression of the RGK protein Rem, an established β subunit–interacting protein, in adult mouse flexor digitorum brevis fibers markedly reduces voltage-induced myoplasmic Ca2+ transients without greatly affecting CaV1.1 targeting, intramembrane gating charge movement, or releasable SR Ca2+ store content. In contrast, a β1a-binding–deficient Rem triple mutant (R200A/L227A/H229A) has little effect on myoplasmic Ca2+ release in response to membrane depolarization. Thus, Rem effectively uncouples the voltage sensors of CaV1.1 from RYR1-mediated SR Ca2+ release via its ability to interact with β1a. Our findings reveal Rem-expressing adult muscle as an experimental system that may prove useful in the definition of the precise role of the β1a subunit in skeletal-type EC coupling.


1991 ◽  
Vol 97 (5) ◽  
pp. 845-884 ◽  
Author(s):  
L Csernoch ◽  
G Pizarro ◽  
I Uribe ◽  
M Rodríguez ◽  
E Ríos

Four manifestations of excitation-contraction (E-C) coupling were derived from measurements in cut skeletal muscle fibers of the frog, voltage clamped in a Vaseline-gap chamber: intramembranous charge movement currents, myoplasmic [Ca2+] transients, flux of calcium release from the sarcoplasmic reticulum (SR), and the intrinsic optical transparency change that accompanies calcium release. In attempts to suppress Ca release by direct effects on the SR, three interventions were applied: (a) a conditioning pulse that causes calcium release and inhibits release in subsequent pulses by Ca-dependent inactivation; (b) a series of brief, large pulses, separated by long intervals (greater than 700 ms), which deplete Ca2+ in the SR; and (c) intracellular application of the release channel blocker ruthenium red. All these reduced calcium release flux. None was expected to affect directly the voltage sensor of the T-tubule; however, all of them reduced or eliminated a component of charge movement current with the following characteristics: (a) delayed onset, peaking 10-20 ms into the pulse; (b) current reversal during the pulse, with an inward phase after the outward peak; and (c) OFF transient of smaller magnitude than the ON, of variable polarity, and sometimes biphasic. When the total charge movement current had a visible hump, the positive phase of the current eliminated by the interventions agreed with the hump in timing and size. The component of charge movement current blocked by the interventions was greater and had a greater inward phase in slack fibers with high [EGTA] inside than in stretched fibers with no EGTA. Its amplitude at -40 mV was on average 0.26 A/F (SEM 0.03) in slack fibers. The waveform of release flux determined from the Ca transients measured simultaneously with the membrane currents had, as described previously (Melzer, W., E. Ríos, and M. F. Schneider. 1984. Biophysical Journal. 45:637-641), an early peak followed by a descent to a steady level during the pulse. The time at which this peak occurred was highly correlated with the time to peak of the current suppressed, occurring on average 6.9 ms later (SEM 0.73 ms). The current suppressed by the above interventions in all cases had a time course similar to the time derivative of the release flux; specifically, the peak of the time derivative of release flux preceded the peak of the current suppressed by 0.7 ms (SEM 0.6 ms). The magnitude of the current blocked was highly correlated with the inhibitory effect of the interventions on Ca2+ release flux.(ABSTRACT TRUNCATED AT 400 WORDS)


1995 ◽  
Vol 268 (6) ◽  
pp. C1381-C1386 ◽  
Author(s):  
R. el-Hayek ◽  
M. Yano ◽  
B. Antoniu ◽  
J. R. Mickelson ◽  
C. F. Louis ◽  
...  

Triad vesicles were isolated from normal (N) and homozygous malignant hyperthermia-susceptible (MHS) porcine skeletal muscle, and two types of sarcoplasmic reticulum Ca2+ release were investigated: 1) polylysine-induced Ca2+ release (direct stimulation of the junctional foot protein), and 2) depolarization-induced Ca2+ release (stimulation of the junctional foot protein via the dihydropyridine receptor). At submaximal concentrations of polylysine, the rates of induced Ca2+ release from the MHS triads were greater than from normal triads. The T tubules of polarized triads were depolarized by the K(+)-to-Na+ ionic replacement protocol. Higher grades of T-tubule depolarization resulted in higher rates of Ca2+ release from both MHS and normal triads but, when compared at a given grade of T-tubule depolarization, the release rate was always greater from the MHS than from normal triads. Thus the activity of the SR Ca2+ release channel is always higher in MHS than in normal muscle at a given submaximal dose of release trigger. This difference is observed when the channel is stimulated directly by polylysine or indirectly via a depolarization-induced activation of the T-tubule dihydropyridine receptor.


1989 ◽  
Vol 94 (3) ◽  
pp. 405-428 ◽  
Author(s):  
G Pizarro ◽  
R Fitts ◽  
I Uribe ◽  
E Ríos

Manifestations of excitation-contraction (EC) coupling of skeletal muscle were studied in the presence of metal ions of the alkaline and alkaline-earth groups in the extracellular medium. Single cut fibers of frog skeletal muscle were voltage clamped in a double Vaseline gap apparatus, and intramembrane charge movement and myoplasmic Ca2+ transients were simultaneously measured. In metal-free extracellular media both charge movement of the charge 1 type and Ca transients were suppressed. Under metal-free conditions the nonlinear charge distribution was the same in depolarized (holding potential of 0 mV) and normally polarized fibers (holding potentials between -80 and -90 mV). The manifestations of EC coupling recovered when ions of groups Ia and IIa of the periodic table were included in the extracellular solution; the extent of recovery depended on the ion species. These results are consistent with the idea that the voltage sensor of EC coupling has a binding site for metal cations--the "priming" site--that is essential for function. A state model of the voltage sensor in which metal ligands bind preferentially to the priming site when the sensor is in noninactivated states accounts for the results. This theory was used to derive the relative affinities of the various ions for the priming site from the magnitude of the EC coupling response. The selectivity sequence thus constructed is: Ca greater than Sr greater than Mg greater than Ba for group IIa cations and Li greater than Na greater than K greater than Rb greater than Cs for group Ia. Ca2+, the most effective of all ions tested, was 1,500-fold more effective than Na+. This selectivity sequence is qualitatively and quantitatively similar to that of the intrapore binding sites of the L-type cardiac Ca channel. This provides further evidence of molecular similarity between the voltage sensor and Ca channels.


1991 ◽  
Vol 98 (2) ◽  
pp. 365-378 ◽  
Author(s):  
G Szücs ◽  
Z Papp ◽  
L Csernoch ◽  
L Kovács

Intramembrane charge movement was measured on skeletal muscle fibers of the frog in a single Vaseline-gap voltage clamp. Charge movements determined both under polarized conditions (holding potential, VH = -100 mV; Qmax = 30.4 +/- 4.7 nC/micro(F), V = -44.4 mV, k = 14.1 mV; charge 1) and in depolarized states (VH = 0 mV; Qmax = 50.0 +/- 6.7 nC/micro(F), V = -109.1 mV, k = 26.6 mV; charge 2) had properties as reported earlier. Linear capacitance (LC) of the polarized fibers was increased by 8.8 +/- 4.0% compared with that of the depolarized fibers. Using control pulses measured under depolarized conditions to calculate charge 1, a minor change in the voltage dependence (to V = -44.6 mV and k = 14.5 mV) and a small increase in the maximal charge (to Qmax = 31.4 +/- 5.5 nC/micro(F] were observed. While in most cases charge 1 transients seemed to decay with a single exponential time course, charge 2 currents showed a characteristic biexponential behavior at membrane potentials between -90 and -180 mV. The voltage dependence of the rate constant of the slower component was fitted with a simple constant field diffusion model (alpha m = 28.7 s-1, V = -124.0 mV, and k = 15.6 mV). The midpoint voltage (V) was similar to that obtained from the Q-V fit of charge 2, while the steepness factor (k) resembled that of charge 1. This slow component could also be isolated using a stepped OFF protocol; that is, by hyperpolarizing the membrane to -190 mV for 200 ms and then coming back to 0 mV in two steps. The faster component was identified as an ionic current insensitive to 20 mM Co2+ but blocked by large hyperpolarizing pulses. These findings are consistent with the model implying that charge 1 and the slower component of charge 2 interconvert when the holding potential is changed. They also explain the difference previously found when comparing the steepness factors of the voltage dependence of charge 1 and charge 2.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Matteo Serano ◽  
Laura Pietrangelo ◽  
Cecilia Paolini ◽  
Flavia A. Guarnier ◽  
Feliciano Protasi

Ryanodine receptor type-1 (RYR1) and Calsequestrin-1 (CASQ1) proteins, located in the sarcoplasmic reticulum (SR), are two of the main players in skeletal excitation–contraction (EC) coupling. Mutations in the human RYR1 gene (encoding for the SR Ca2+ release channel) and ablation in mice of CASQ1 (a SR Ca2+ binding protein) cause hypersensitivity to halogenated anesthetics (malignant hyperthermia [MH] susceptibility) and to heat (heat stroke; HS). As both MH and HS are characterized by excessive cytosolic Ca2+ levels and hypermetabolic responses, we studied the metabolism of 4-mo-old mice from two different lines that are MH/HS susceptible: knock-in mice carrying a human MH mutation (RYR1YS) and CASQ1-knockout (ko) mice. RYR1YS and, to a lesser degree, CASQ1-null mice show an increased volume of oxygen consumption (VO2) and a lower respiratory quotient (RQ) compared with WT mice (indicative of a metabolism that relies more on lipids). This finding is accompanied by a reduction in total body fat mass in both Y522S and CASQ1-null mice (again, compared with WT). In addition, we found that RYR1YS and CASQ1-null mice have an increased food consumption (+26.04% and +25.58% grams/day, respectively) and higher basal core temperature (+0.57°C and +0.54°C, respectively) compared with WT mice. Finally, Western blots and electron microscopy indicated that, in hyperthermic mice, (1) SERCA (used to remove myoplasmic Ca2+) and UCP3 (responsible for a thermogenic process that dissipates mitochondrial H+ gradient) are overexpressed, and (2) mitochondrial volume and percentage of damaged mitochondria are both increased. In conclusion, the MH/HS phenotype in RYR1YS and CASQ1-null mice is associated with an intrinsically increased basal metabolism.


Sign in / Sign up

Export Citation Format

Share Document