scholarly journals Membrane cholesterol extraction decreases Na+ transport in A6 renal epithelia

2006 ◽  
Vol 290 (1) ◽  
pp. C87-C94 ◽  
Author(s):  
Corina Balut ◽  
Paul Steels ◽  
Mihai Radu ◽  
Marcel Ameloot ◽  
Willy Van Driessche ◽  
...  

In this study, we have investigated the dependence of Na+ transport regulation on membrane cholesterol content in A6 renal epithelia. We continuously monitored short-circuit current ( Isc), transepithelial conductance ( GT), and transepithelial capacitance ( CT) to evaluate the effects of cholesterol extraction from the apical and basolateral membranes in steady-state conditions and during activation with hyposmotic shock, oxytocin, and adenosine. Cholesterol extraction was achieved by perfusing the epithelia with methyl-β-cyclodextrin (mβCD) for 1 h. In steady-state conditions, apical membrane cholesterol extraction did not significantly affect the electrophysiological parameters; in contrast, marked reductions were observed during basolateral mβCD treatment. However, apical mβCD application hampered the responses of Isc and GT to hypotonicity, oxytocin, and adenosine. Analysis of the blocker-induced fluctuation in Isc demonstrated that apical mβCD treatment decreased the epithelial Na+ channel (ENaC) open probability ( Po) in the steady state as well as after activation of Na+ transport by adenosine, whereas the density of conducting channels was not significantly changed as confirmed by CT measurements. Na+ transport activation by hypotonicity was abolished during basolateral mβCD treatment as a result of reduced Na+/K+ pump activity. On the basis of the findings in this study, we conclude that basolateral membrane cholesterol extraction reduces Na+/K+ pump activity, whereas the reduced cholesterol content of the apical membranes affects the activation of Na+ transport by reducing ENaC Po.

1993 ◽  
Vol 265 (1) ◽  
pp. G28-G34 ◽  
Author(s):  
W. E. Khalbuss ◽  
R. Alkiek ◽  
C. G. Marousis ◽  
R. C. Orlando

K+ conductance in apical and basolateral cell membranes of rabbit esophageal epithelial cells was investigated within intact epithelium by impalement with conventional microelectrodes from luminal or serosal sides. Under steady-state conditions, K+ conductance was demonstrated in basolateral, but not apical, membranes by showing 1) membrane depolarization upon exposure to either solutions high in K+ (20-65 mM) or containing Ba2+, tetraethylammonium, or quinine, and 2) a resistance ratio that increased on exposure to high K+ solution and decreased on exposure to Ba2+, quinine, and tetraethylammonium. From exposures to high K+, the apparent K+ transference number and electromotive force generated at the basolateral membrane were calculated and found to be 0.42 +/- 0.01 and -83 +/- 3 mV, respectively. Furthermore, basolateral K+ conductance was shown to be important for maintaining resting net transepithelial Na+ absorption in that high K+ or barium inhibited the transepithelial potential difference and short-circuit current of Ussing-chambered epithelia. We conclude that under steady-state conditions the basolateral, but not apical, membranes of esophageal epithelial cells contain a K(+)-conductive pathway and that this pathway is important for active sodium absorption.


1987 ◽  
Vol 89 (4) ◽  
pp. 563-580 ◽  
Author(s):  
J R Demarest ◽  
A L Finn

Experimental modulation of the apical membrane Na+ conductance or basolateral membrane Na+-K+ pump activity has been shown to result in parallel changes in the basolateral K+ conductance in a number of epithelia. To determine whether modulation of the basolateral K+ conductance would result in parallel changes in apical Na+ conductance and basolateral pump activity, Necturus urinary bladders stripped of serosal muscle and connective tissue were impaled through their basolateral membranes with microelectrodes in experiments that allowed rapid serosal solution changes. Exposure of the basolateral membrane to the K+ channel blockers Ba2+ (0.5 mM/liter), Cs+ (10 mM/liter), or Rb+ (10 mM/liter) increased the basolateral resistance (Rb) by greater than 75% in each case. The increases in Rb were accompanied simultaneously by significant increases in apical resistance (Ra) of greater than 20% and decreases in transepithelial Na+ transport. The increases in Ra, measured as slope resistances, cannot be attributed to nonlinearity of the I-V relationship of the apical membrane, since the measured cell membrane potentials with the K+ channel blockers present were not significantly different from those resulting from increasing serosal K+, a maneuver that did not affect Ra. Thus, blocking the K+ conductance causes a reduction in net Na+ transport by reducing K+ exit from the cell and simultaneously reducing Na+ entry into the cell. Close correlations between the calculated short-circuit current and the apical and basolateral conductances were preserved after the basolateral K+ conductance pathways had been blocked. Thus, the interaction between the basolateral and apical conductances revealed by blocking the basolateral K+ channels is part of a network of feedback relationships that normally serves to maintain cellular homeostasis during changes in the rate of transepithelial Na+ transport.


1986 ◽  
Vol 87 (3) ◽  
pp. 467-483 ◽  
Author(s):  
T C Cox ◽  
S I Helman

The stoichiometry of pump-mediated Na/K exchange was studied in isolated epithelial sheets of frog skin. 42K influx across basolateral membranes was measured with tissues in a steady state and incubated in either beakers or in chambers. The short-circuit current provided estimates of Na+ influx at the apical membranes of the cells. 42K influx of tissues bathed in Cl- or SO4-Ringer solution averaged approximately 8 microA/cm2. Ouabain inhibited 94% of the 42K influx. Furosemide was without effect on pre-ouabain-treated tissues but inhibited a ouabain-induced and Cl--dependent component of 42K influx. After taking into account the contribution of the Na+ load to the pump by way of basolateral membrane recycling of Na+, the stoichiometry was found to increase from approximately 2 to 6 as the pump-mediated Na+ transport rate increased from 10 to 70 microA/cm2. Extrapolation of the data to low rates of Na+ transport (less than 10 microA/cm2) indicated that the stoichiometry would be in the vicinity of 3:2. As pump-mediated K+ influx saturates with increasing rates of Na+ transport, Na+ efflux cannot be obligatorily coupled to K+ influx at all rates of transepithelial Na+ transport. These results are similar to those of Mullins and Brinley (1969. Journal of General Physiology. 53:504-740) in studies of the squid axon.


1975 ◽  
Vol 63 (2) ◽  
pp. 313-320
Author(s):  
J. L. Wood ◽  
A. M. Jungreis ◽  
W. R. Harvey

1. The 28Mg-measured net flux of magnesium from lumen-side to haemolymph-side of the isolated and short-circuited midgut was 1.97 +/− 0.28 mu-equiv cm(−2) /(−1) in 8 mM-Mg2+. 2. The magnesium-influx shows a delay before the tracer steady-state is attained, indicating the existence of a magnesium-transport pool equivalent to 6.7 mu-equiv/g wet weight of midgut tissue. 3. Magnesium depresses the short-circuit current produced the midgut but not the potassium transport, the depression being equal to the rate of magnesium transport. 4. Magnesium transport yields a linear Lineweaver-Burk plot with an apparent Km of 34 mM-Mg2+ and an apparent Vmax of 14.9 mu-equiv cm(−1) /(−1). 5. Magnesium is actively transported across the midgut and contributes to the regulation of the haemolymph magnesium concentration in vivo.


1980 ◽  
Vol 239 (6) ◽  
pp. G532-G535 ◽  
Author(s):  
A. Ayalon ◽  
A. Corcia ◽  
G. Klemperer ◽  
S. R. Caplan

The effect of furosemide on acid secretion and Cl- transport was studied in isolated fundic mucosa of the guinea pig. Furosemide (10(-3) M), applied to the serosal side produced an immediate effect on the short-circuit current (Isc), lowering it by 47 +/- 2%. Potential difference decreased by 29 +/- 3%, electrical conductance by 18 +/- 4%, acid secretion by 38 +/- 1%, and net flux of Cl- from serosal-to-mucosal side by 37%. Application of the drug to the mucosal side produced similar effects on acid secretion and on the electrical parameters. It is suggested that furosemide blocks the entrance of Cl-, by the Na+--Cl- cotransport mechanism, through the basolateral membrane of the secreting cell. The consequent reduction in electrogenic Cl- transport would cause Isc and acid secretion to decrease. A reduction of Cl- conductance of the apical membrane, upon mucosal application of the drug, would cause similar effects on acid secretion and Cl- transport.


1988 ◽  
Vol 255 (3) ◽  
pp. G286-G291 ◽  
Author(s):  
R. C. Orlando ◽  
N. A. Tobey ◽  
V. J. Schreiner ◽  
R. D. Readling

The transmural electrical potential difference (PD) was measured in vivo across the buccal mucosa of humans and experimental animals. Mean PD was -31 +/- 2 mV in humans, -34 +/- 2 mV in dogs, -39 +/- 2 mV in rabbits, and -18 +/- 1 mV in hamsters. The mechanisms responsible for this PD were explored in Ussing chambers using dog buccal mucosa. After equilibration, mean PD was -16 +/- 2 mV, short-circuit current (Isc) was 15 +/- 1 microA/cm2, and resistance was 1,090 +/- 100 omega.cm2, the latter indicating an electrically "tight" tissue. Fluxes of [14C]mannitol, a marker of paracellular permeability, varied directly with tissue conductance. The net fluxes of 22Na and 36Cl were +0.21 +/- 0.05 and -0.04 +/- 0.02 mueq/h.cm2, respectively, but only the Na+ flux differed significantly from zero. Isc was reduced by luminal amiloride, serosal ouabain, or by reducing luminal Na+ below 20 mM. This indicated that the Isc was determined primarily by active Na+ absorption and that Na+ traverses the apical membrane at least partly through amiloride-sensitive channels and exits across the basolateral membrane through Na+-K+-ATPase activity. We conclude that buccal mucosa is capable of active electrolyte transport and that this capacity contributes to generation of the buccal PD in vivo.


1988 ◽  
Vol 137 (1) ◽  
pp. 277-286 ◽  
Author(s):  
D. N. Crawford ◽  
W. R. Harvey

Ba2+ and Ca2+ prevent and reverse the Btk delta-endotoxin inhibition of the short-circuit current in isolated lepidopteran midgut. These findings support the K+ pump-leak steady-state model for midgut K+ homeostasis and the K+ channel mechanism of Bt toxin action. They provide a new tool with which to study the interactions between Bt toxin and midgut cell membranes.


2005 ◽  
Vol 288 (5) ◽  
pp. G956-G963 ◽  
Author(s):  
Kazi Mirajul Hoque ◽  
Vazhaikkurichi M. Rajendran ◽  
Henry J. Binder

Zn, an essential micronutrient and second most abundant trace element in cell and tissues, reduces stool output when administered to children with acute diarrhea. The mechanism by which Zn improves diarrhea is not known but could result from stimulating Na absorption and/or inhibiting anion secretion. The aim of this study was to investigate the direct effect of Zn on intestinal epithelial ion absorption and secretion. Rat ileum was partially stripped of serosal and muscle layers, and the mucosa was mounted in lucite chambers. Potential difference and short-circuit current were measured by conventional current-voltage clamp method.86Rb efflux and uptake were assessed for serosal K channel and Na-K-2Cl cotransport activity, respectively. Efflux experiments were performed in isolated cells preloaded with86Rb in the presence of ouabain and bumetanide, whereas uptake experiments were performed in low-Cl isotonic buffer containing Ba and ouabain. Neither mucosal nor serosal Zn affected glucose-stimulated Na absorption. In contrast, forskolin-induced Cl secretion was markedly reduced by serosal but not mucosal addition of Zn. Zn also substantially reversed the increase in Cl secretion induced by 8-bromoadenosine 3′,5′-cyclic monophosphate (8-BrcAMP) with half-maximal inhibitory concentration of 0.43 mM. In contrast, serosal Zn did not alter Cl secretion stimulated by carbachol, a Ca-dependent agonist. Zn inhibited 8-BrcAMP-stimulated86Rb efflux but not carbachol-stimulated86Rb efflux. Zn had no effect on bumetanide-sensitive86Rb uptake, Na-K-ATPase, or CFTR. We conclude from these studies that Zn inhibits cAMP-induced Cl secretion by blocking basolateral membrane K channels.


Author(s):  
Andrew J. Nickerson ◽  
Vazhaikkurichi M. Rajendran

Recent studies in our lab have shown that the KV7 channel activator, flupirtine, inhibits colonic epithelial Cl- secretion through effects on submucosal neurons of the enteric nervous system (ENS). We hypothesized that flupirtine would also stimulate Na+ absorption as a result of reduced secretory ENS input to the epithelium. To test this hypothesis, unidirectional 22Na+ fluxes were measured under voltage-clamped conditions. Pharmacological approaches using an Ussing-style recording chamber, combined immunofluorescence microscopy techniques were used to determine the effect of flupirtine on active Na+ transport in the rat colon. Flupirtine stimulated electroneutral Na+ absorption in partially seromuscular stripped colonic tissues, while simultaneously inhibiting short circuit current (ISC; i.e., Cl- secretion). Both of these effects were attenuated by pre-treatment with the ENS inhibitor, tetrodotoxin. The NHE-3-selective inhibitor, S3226, significantly inhibited flupirtine-stimulated Na+ absorption whereas the NHE-2-selective inhibitor HOE-694 did not. NHE-3 localization near the apical membranes of surface epithelial cells was also more apparent in flupirtine-treated colon versus control. Flupirtine did not alter epithelial Na+ channel (ENaC)-mediated Na+ absorption in distal colonic tissues obtained from hyperaldosteronaemic rats and had no effect in the normal ileum, but did stimulate Na+ absorption in the proximal colon. Finally, the parallel effects of flupirtine on ISC (Cl- secretion) and Na+ absorption were significantly correlated with each other. Together, these data indicate that flupirtine stimulates NHE-3-dependent Na+ absorption, likely as a result of reduced stimulatory input to the colonic epithelium by submucosal ENS neurons.


1990 ◽  
Vol 259 (6) ◽  
pp. L459-L467 ◽  
Author(s):  
G. J. Tessier ◽  
T. R. Traynor ◽  
M. S. Kannan ◽  
S. M. O3'Grady

Equine tracheal epithelium, stripped of serosal muscle, mounted in Ussing chambers, and bathed in plasmalike Ringer solution generates a serosa-positive transepithelial potential of 10–22 mV and a short-circuit current (Isc) of 70–200 microA/cm2. Mucosal amiloride (10 microM) causes a 40–60% decrease in Isc and inhibits the net transepithelial Na flux by 95%. Substitution of Cl with gluconate resulted in a 30% decrease in basal Isc. Bicarbonate substitution with 20 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid decreased the Isc by 21%. The Cl-dependent Isc was inhibited by serosal addition of 1 mM amiloride. Bicarbonate replacement or serosal amiloride (1 mM) inhibits the net Cl flux by 72 and 69%, respectively. Bicarbonate replacement significantly reduces the effects of serosal amiloride (1 mM) on Isc, indicating its effect is HCO3 dependent. Addition of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP; 100 microM) causes a 40% increase in Isc. This effect is inhibited by subsequent addition of 10 microM serosal bumetanide. Bumetanide (10 microM) reduces net Cl secretion following stimulation with 8-BrcAMP (100 microM). Serosal addition of BaCl2 (1 mM) causes a reduction in Isc equal to that following Cl replacement in the presence or absence of 100 microM cAMP. These results suggest that 1) Na absorption depends on amiloride-inhibitable Na channels in the apical membrane, 2) Cl influx across the basolateral membrane occurs by both a Na-H/Cl-HCO3 parallel exchange mechanism under basal conditions and by a bumetanide-sensitive Na-(K?)-Cl cotransport system under cAMP-stimulated conditions, and 3) basal and cAMP-stimulated Cl secretion depends on Ba-sensitive K channels in the basolateral membrane.


Sign in / Sign up

Export Citation Format

Share Document