Flupirtine enhances NHE-3 mediated Na+ absorption in rat colon via an ENS-dependent mechanism

Author(s):  
Andrew J. Nickerson ◽  
Vazhaikkurichi M. Rajendran

Recent studies in our lab have shown that the KV7 channel activator, flupirtine, inhibits colonic epithelial Cl- secretion through effects on submucosal neurons of the enteric nervous system (ENS). We hypothesized that flupirtine would also stimulate Na+ absorption as a result of reduced secretory ENS input to the epithelium. To test this hypothesis, unidirectional 22Na+ fluxes were measured under voltage-clamped conditions. Pharmacological approaches using an Ussing-style recording chamber, combined immunofluorescence microscopy techniques were used to determine the effect of flupirtine on active Na+ transport in the rat colon. Flupirtine stimulated electroneutral Na+ absorption in partially seromuscular stripped colonic tissues, while simultaneously inhibiting short circuit current (ISC; i.e., Cl- secretion). Both of these effects were attenuated by pre-treatment with the ENS inhibitor, tetrodotoxin. The NHE-3-selective inhibitor, S3226, significantly inhibited flupirtine-stimulated Na+ absorption whereas the NHE-2-selective inhibitor HOE-694 did not. NHE-3 localization near the apical membranes of surface epithelial cells was also more apparent in flupirtine-treated colon versus control. Flupirtine did not alter epithelial Na+ channel (ENaC)-mediated Na+ absorption in distal colonic tissues obtained from hyperaldosteronaemic rats and had no effect in the normal ileum, but did stimulate Na+ absorption in the proximal colon. Finally, the parallel effects of flupirtine on ISC (Cl- secretion) and Na+ absorption were significantly correlated with each other. Together, these data indicate that flupirtine stimulates NHE-3-dependent Na+ absorption, likely as a result of reduced stimulatory input to the colonic epithelium by submucosal ENS neurons.

2000 ◽  
Vol 278 (2) ◽  
pp. C336-C343 ◽  
Author(s):  
W. Qiu ◽  
B. Lee ◽  
M. Lancaster ◽  
W. Xu ◽  
S. Leung ◽  
...  

We found mRNA for the three isoforms of the cyclic nucleotide-gated nonselective cation channel expressed in the mucosal layer of the rat intestine from the duodenum to the colon and in intestinal epithelial cell lines in culture. Because these channels are permeable to sodium and calcium and are stimulated by cGMP or cAMP, we measured 8-bromo-cGMP-stimulated sodium-mediated short-circuit current ( I sc) in proximal and distal colon and unidirectional45Ca2+fluxes in proximal colon to determine whether these channels could mediate transepithelial sodium and calcium absorption across the colon. Sodium-mediated I sc, stimulated by 8-bromo-cGMP, were inhibited by dichlorobenzamil and l-cis-diltiazem, blockers of cyclic nucleotide-gated cation channels, suggesting that these ion channels can mediate transepithelial sodium absorption. Sodium-mediated I sc and net transepithelial45Ca2+absorption were stimulated by heat-stable toxin from Escherichia coli that increases cGMP. Addition of l-cis-diltiazem inhibited the enhanced transepithelial absorption of both ions. These results suggest that cyclic nucleotide-gated cation channels simultaneously increase net sodium and calcium absorption in the colon of the rat.


2006 ◽  
Vol 291 (4) ◽  
pp. C636-C648 ◽  
Author(s):  
Susan Troutman Halm ◽  
Tianjiang Liao ◽  
Dan R. Halm

Secretion of Cl− and K+ in the colonic epithelium operates through a cellular mechanism requiring K+ channels in the basolateral and apical membranes. Transepithelial current [short-circuit current ( Isc)] and conductance ( Gt) were measured for isolated distal colonic mucosa during secretory activation by epinephrine (Epi) or PGE2 and synergistically by PGE2 and carbachol (PGE2 + CCh). TRAM-34 at 0.5 μM, an inhibitor of KCa3.1 (IK, Kcnn4) K+ channels (H. Wulff, M. J. Miller, W. Hänsel, S. Grissmer, M. D. Cahalan, and K. G. Chandy. Proc Natl Acad Sci USA 97: 8151–8156, 2000), did not alter secretory Isc or Gt in guinea pig or rat colon. The presence of KCa3.1 in the mucosa was confirmed by immunoblot and immunofluorescence detection. At 100 μM, TRAM-34 inhibited Isc and Gt activated by Epi (∼4%), PGE2 (∼30%) and PGE2 + CCh (∼60%). The IC50 of 4.0 μM implicated involvement of K+ channels other than KCa3.1. The secretory responses augmented by the K+ channel opener 1-EBIO were inhibited only at a high concentration of TRAM-34, suggesting further that KCa3.1 was not involved. Sensitivity of the synergistic response (PGE2 + CCh) to a high concentration TRAM-34 supported a requirement for multiple K+ conductive pathways in secretion. Clofilium (100 μM), a quaternary ammonium, inhibited Cl− secretory Isc and Gt activated by PGE2 (∼20%) but not K+ secretion activated by Epi. Thus Cl− secretion activated by physiological secretagogues occurred without apparent activity of KCa3.1 channels but was dependent on other types of K+ channels sensitive to high concentrations of TRAM-34 and/or clofilium.


1984 ◽  
Vol 246 (2) ◽  
pp. G151-G158 ◽  
Author(s):  
H. Knauf ◽  
K. Haag ◽  
R. Lubcke ◽  
E. Berger ◽  
W. Gerok

Current pulses (I) were injected into the lumen of proximal colonic segments in vivo, and the corresponding voltage deflections (delta PD) superimposed on the transcolonic PD were recorded. From the exponential decay of delta PD along the colon axis, the electrical length constant (lambda) was determined. Based on cable analysis the input resistance (= delta PD x = 0/I) and lambda made it possible to calculate the specific resistance (Rm) of the colonic epithelium as 128 +/- 16 omega X cm2. As Rm proved to be an ohmic resistor, the extrapolation from open-circuit PD (8-12 mV, lumen negative) to zero PD was feasible and made the calculation of short-circuit current (= PD/Rm) equal to 70 +/- 16 microA/cm2. In the presence of amiloride short-circuit current decreased to about 50%, whereas with theophylline it increased by about 30%. Substitution of luminal Na+ with choline or Cl- with cyclamate was associated with a marked increase of Rm. The rheogenic component of net Na+ transport was estimated to be only 8%. Electroneutral Na+ absorption functionally coupled with Cl- absorption displayed the characteristic feature of ion transport in the rat proximal colon.


1998 ◽  
Vol 275 (6) ◽  
pp. G1367-G1376 ◽  
Author(s):  
Silke Hörger ◽  
Gerhard Schultheiß ◽  
Martin Diener

The effect of epinephrine on transport of K+, Na+, Cl−, and[Formula: see text] across the rat colon was studied using the Ussing chamber technique. Epinephrine (5 × 10−6mol/l) induced a biphasic change in short-circuit current ( Isc) in distal and proximal colon: a transient increase followed by a long-lasting decay. The first phase of the Iscresponse was abolished in Cl−-poor solution or after bumetanide administration, indicating a transient induction of Cl−secretion. The second phase of the response to epinephrine was suppressed by apical administration of the K+channel blocker, quinine, and was concomitant with an increase in serosal-to-mucosal Rb+flux, indicating that epinephrine induced K+secretion, although this response was much smaller than the change in Isc. In addition, the distal colon displayed a decrease in mucosal-to-serosal and serosal-to-mucosal Cl−fluxes when treated with epinephrine. In the distal colon, indomethacin abolished the first phase of the epinephrine effect, whereas the second phase was suppressed by TTX. In the proximal colon, indomethacin and TTX were ineffective. The neuronally mediated response to epinephrine in the distal colon was suppressed by the nonselective β-receptor blocker, propranolol, and by the β2-selective blocker, ICI-118551, whereas the epithelial response in the proximal colon was suppressed by the nonselective α-blocker, phentolamine, and by the selective α2-blocker, yohimbine. These results indicate a segment-specific action of epinephrine on ion transport: a direct stimulatory action on epithelial α2-receptors in the proximal colon and an indirect action on secretomotoneurons via β2-receptors in the distal colon.


1998 ◽  
Vol 275 (5) ◽  
pp. G1166-G1172 ◽  
Author(s):  
Rainer Cermak ◽  
Ursula Föllmer ◽  
Siegfried Wolffram

The aim of this study was to investigate the possible effects of the flavonol quercetin, the most abundant dietary flavonoid, on the intestinal mucosa. In vitro experiments were performed with various segments of the rat intestine, using the Ussing chamber technique. Quercetin increased the short-circuit current ( I sc) in the jejunum, ileum, and proximal and distal colon. Additional experiments were performed using preparations of the proximal colon. The maximum effective dose of quercetin was found to be ∼100 μM. The quercetin-induced increase in I sc was inhibited by the Cl− channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid. Adding blockers of the Na+-K+-2Cl−cotransporter to the serosal compartment diminished the increase of I sc due to quercetin. Ion substitution and flux measurements indicated that the effect of quercetin was due to electrogenic Cl− and[Formula: see text] secretion. In contrast to the aglycone, the quercetin glycoside rutin had no effect. The effect of quercetin on I scwas additive to the I sc increase induced by forskolin, but the flavonoid diminished the I sc evoked by carbachol. The phosphodiesterase inhibitor theophylline blocked the effect of quercetin. Genistein, a related isoflavone, did not alter the I sc evoked by quercetin. These findings demonstrate that the dietary flavonol quercetin induces Cl−secretion and most likely [Formula: see text]secretion in rat small and large intestine. The effects are restricted to the flavonol aglycone.


1982 ◽  
Vol 98 (1) ◽  
pp. 155-159 ◽  
Author(s):  
M. W. Smith ◽  
P. S. James

SUMMARYProximal colons taken from lambs up to 3 weeks after birth were shown to transport both sodium and chloride from lumen to blood when incubated in vitro.Sodium transport fell into three phases during postnatal development. The first covered the period from birth to 3 days of age when sodium transport was high and equal to that calculated from measurement of short-circuit current. The second was seen in 5- and 7-day-old lambs where the short-circuit current was low and the net transport of sodium was negligible. The third was seen in 2-3-week-old lambs where sodium transport was high, but the short-circuit current was low.Chloride absorption by colons taken from 1-day-old lambs appeared to be in exchange for an anion, possibly bicarbonate. Chloride absorption by colons taken from 3-week-old lambs appeared to be electrogenie or coupled directly to the transport of sodium.A possible explanation for the failure of electrolyte absorption by colons taken from 5- and 7-day-old lambs is discussed.


1991 ◽  
Vol 260 (6) ◽  
pp. G904-G910 ◽  
Author(s):  
K. J. Goerg ◽  
C. Diener ◽  
M. Diener ◽  
W. Rummel

The effect of prostaglandin D2 (PGD2) on colonic ion transport was studied in the Ussing chamber. PGD2 (10(-6) M) decreased baseline short-circuit current (Isc) in two preparations of rat colon descendens, a mucosa-submucosa preparation with and a mucosa preparation without the submucosal plexus. In both preparations, PGD2 inhibited the neuronally mediated secretory responses to electric field stimulation, the sea anemone toxin ATX II, and different cholinergic agents. Unidirectional flux measurements revealed that PGD2 diminished the secretagogue-induced increase in the serosal-to-mucosal flux of Cl- and thereby inhibited net Cl- secretion. PGD2, however, had no effect on the adenosine 3',5'-cyclic monophosphate-mediated response to forskolin or vasoactive intestinal peptide or on guanosine 3',5'-cyclic monophosphate-mediated secretion induced by the heat-stable enterotoxin of Escherichia coli. The PGD2 also blocked the increase in Isc evoked by two neuronally acting inflammatory mediators, i.e., bradykinin and PGI2 in the mucosa-submucosa preparation, but had no effect on the response to PGE2. Consequently, PGD2 exerts an indirect antisecretory effect caused by an inhibition of enteric secretomotor neurons of both the submucosal and the mucosal plexus.


1993 ◽  
Vol 265 (1) ◽  
pp. G28-G34 ◽  
Author(s):  
W. E. Khalbuss ◽  
R. Alkiek ◽  
C. G. Marousis ◽  
R. C. Orlando

K+ conductance in apical and basolateral cell membranes of rabbit esophageal epithelial cells was investigated within intact epithelium by impalement with conventional microelectrodes from luminal or serosal sides. Under steady-state conditions, K+ conductance was demonstrated in basolateral, but not apical, membranes by showing 1) membrane depolarization upon exposure to either solutions high in K+ (20-65 mM) or containing Ba2+, tetraethylammonium, or quinine, and 2) a resistance ratio that increased on exposure to high K+ solution and decreased on exposure to Ba2+, quinine, and tetraethylammonium. From exposures to high K+, the apparent K+ transference number and electromotive force generated at the basolateral membrane were calculated and found to be 0.42 +/- 0.01 and -83 +/- 3 mV, respectively. Furthermore, basolateral K+ conductance was shown to be important for maintaining resting net transepithelial Na+ absorption in that high K+ or barium inhibited the transepithelial potential difference and short-circuit current of Ussing-chambered epithelia. We conclude that under steady-state conditions the basolateral, but not apical, membranes of esophageal epithelial cells contain a K(+)-conductive pathway and that this pathway is important for active sodium absorption.


1978 ◽  
Vol 234 (4) ◽  
pp. F297-F301
Author(s):  
O. A. Candia ◽  
H. F. Schoen

Frog corneas were mounted in a modified Ussing chamber and short-circuit current (SCC) and unidirectional Cl fluxes were measured. Bumetanide, a loop diuretic, at concentrations as low as 10(-7) M, reduced the SCC 29%. At 10(-5) M, bumetanide reduced the SCC 96% and increased transcorneal electrical resistance 20-51%. The forward Cl flux declined from 0.71 +/- 0.04 to 0.20 +/- 0.03 mueq/h.cm2 (n, 7), while, in separate experiments, the backward Cl flux did not change significantly (from 0.22 +/- 0.03 to 0.23 +/- 0.04; n, 7). When corneas were mounted in Cl-free Ringer and the net Na transport was stimulated with amphotericin B, 10(-5) M bumetanide had no effect on the SCC. In separate experiments the effect of 10(-5) M bumetanide on the O2 consumption was measured in a stirrer bath assembly. Bumetanide decreased the O2 consumption from 352 +/- 14 to 297 +/- 19 microliter/h.cm2 (significantly different from sham-treated controls). This decrease was similar to that obtained with furosemide or when Cl was removed from the bathing medium. We infer from these results that bumetanide is a selective inhibitor of active Cl transport in the bullfrog cornea.


1993 ◽  
Vol 265 (1) ◽  
pp. C166-C170 ◽  
Author(s):  
H. Tamai ◽  
J. F. Kachur ◽  
M. B. Grisham ◽  
M. W. Musch ◽  
E. B. Chang ◽  
...  

The granulocyte-derived oxidant, monochloramine (NH2Cl), is known to stimulate chloride ion secretion in rat distal colonic mucosa mounted in Ussing chambers, through mechanisms that are sensitive and insensitive to tetrodotoxin (TTX). The possible role of intracellular thiols, in the mechanism of action of NH2Cl as a secretagogue, was evaluated with the thiol-oxidizing agent diamide and by measuring tissue sulfhydryl levels in response to NH2Cl. Serosal exposure to the antioxidant glutathione (0.25 mM), 5 min before NH2Cl (50 microM) addition, decreased the maximal effect of 50 microM NH2Cl on short-circuit current (Isc). The NH2Cl-stimulated increase in Isc was not affected by mucosal amiloride (5 microM). Pretreatment with 0.1 mM diamide shortened the lag period before the increase in Isc in response to NH2Cl, but it did not affect the maximal increase in Isc. Although TTX (0.5 microM) increased the lag time for achievement of the maximal Isc response to NH2Cl, the neurotoxin did not inhibit the effect of diamide, suggesting that diamide acts primarily on the nonneural component of NH2Cl-stimulated secretion. Incubation of colonic mucosa with NH2Cl, with or without diamide, decreased cellular acid-soluble sulfhydryl concentrations. Taken together, the results support a role for epithelial cell thiols in NH2Cl-stimulated electrolyte secretion by the rat colon.


Sign in / Sign up

Export Citation Format

Share Document