Ba2+ inhibition of VIP- and A23187-stimulated Cl- secretion by T84 cell monolayers

1986 ◽  
Vol 250 (3) ◽  
pp. C486-C494 ◽  
Author(s):  
K. G. Mandel ◽  
J. A. McRoberts ◽  
G. Beuerlein ◽  
E. S. Foster ◽  
K. Dharmsathaphorn

Addition of either 10(-8) M vasoactive intestinal polypeptide (VIP) or 10(-6) M A23187 to T84 cell monolayers, grown on permeable supports and mounted in Ussing chambers, stimulated net Cl- secretion. The effect of 10(-6) M A23187 on Cl- flux was consistently smaller than that observed with 10(-8) M VIP. In both cases the increase in net Cl- secretion accounted for the entire change in the observed short-circuit current (Isc). Since Cl- enters the cells through a basolaterally localized Na+-K+-Cl(-)-cotransport system (J. Clin. Invest. 75: 462, 1985), the fate of K+, which is cotransported with Cl- during VIP, and A23187-mediated Cl- secretion was explored. Unidirectional and net transepithelial 42K+ flux rates were negligible compared with 36Cl- flux rates (less than 4% of Cl- flux), indicating that little K+ was secreted along with Cl-. K+ recycling across the basolateral membrane was suggested from experiments in which 86Rb+ efflux (as a tracer for K+) was measured across the apical and basolateral membranes of 86Rb+ -preloaded monolayers under voltage-clamped conditions. In the absence of secretagogues, 86Rb+ efflux was 10-fold higher across the basolateral membrane than across the apical membrane. 86Rb+ efflux across the basolateral membrane was accelerated two- to threefold by addition of either VIP or A23187. In each case accelerated efflux was inhibited by 5 mM Ba2+. Cl- secretion induced by VIP or A23187 was also inhibited by serosal addition of Ba2+.(ABSTRACT TRUNCATED AT 250 WORDS)

1990 ◽  
Vol 259 (6) ◽  
pp. L459-L467 ◽  
Author(s):  
G. J. Tessier ◽  
T. R. Traynor ◽  
M. S. Kannan ◽  
S. M. O3'Grady

Equine tracheal epithelium, stripped of serosal muscle, mounted in Ussing chambers, and bathed in plasmalike Ringer solution generates a serosa-positive transepithelial potential of 10–22 mV and a short-circuit current (Isc) of 70–200 microA/cm2. Mucosal amiloride (10 microM) causes a 40–60% decrease in Isc and inhibits the net transepithelial Na flux by 95%. Substitution of Cl with gluconate resulted in a 30% decrease in basal Isc. Bicarbonate substitution with 20 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid decreased the Isc by 21%. The Cl-dependent Isc was inhibited by serosal addition of 1 mM amiloride. Bicarbonate replacement or serosal amiloride (1 mM) inhibits the net Cl flux by 72 and 69%, respectively. Bicarbonate replacement significantly reduces the effects of serosal amiloride (1 mM) on Isc, indicating its effect is HCO3 dependent. Addition of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP; 100 microM) causes a 40% increase in Isc. This effect is inhibited by subsequent addition of 10 microM serosal bumetanide. Bumetanide (10 microM) reduces net Cl secretion following stimulation with 8-BrcAMP (100 microM). Serosal addition of BaCl2 (1 mM) causes a reduction in Isc equal to that following Cl replacement in the presence or absence of 100 microM cAMP. These results suggest that 1) Na absorption depends on amiloride-inhibitable Na channels in the apical membrane, 2) Cl influx across the basolateral membrane occurs by both a Na-H/Cl-HCO3 parallel exchange mechanism under basal conditions and by a bumetanide-sensitive Na-(K?)-Cl cotransport system under cAMP-stimulated conditions, and 3) basal and cAMP-stimulated Cl secretion depends on Ba-sensitive K channels in the basolateral membrane.


1989 ◽  
Vol 257 (1) ◽  
pp. C45-C51 ◽  
Author(s):  
S. M. O'Grady ◽  
P. J. Wolters

Porcine gallbladder, stripped of serosal muscle, mounted in Ussing chambers, and bathed in plasma-like Ringer solution generates a serosal positive transepithelial potential of 4-7 mV and a short-circuit current (Isc) of 50-120 microA/cm2. Substitution of Cl with gluconate or HCO3 with N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) results in a 50% decrease in Isc. Treatment with 1 mM amiloride (mucosal side) or 0.1 mM acetazolamide (both sides) causes 25-27% inhibition of the Isc. Mucosal addition of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid inhibits the Isc by 17%. Serosal addition of 0.1 mM bumetanide inhibits the Isc by 28%. Amiloride (1 mM) inhibits the net transepithelial fluxes of Na and Cl by 55 and 41%, respectively. Substitution of Cl with gluconate inhibits the net Na flux by 50%, whereas substitution of HCO3 with HEPES inhibits 85-90% of the net Na flux and changes Cl absorption to net secretion. Based on these results, it is hypothesized that Na and Cl transport across the apical membrane is mediated by two pathways, Na-H/Cl-HCO3 exchange and Na-HCO3 cotransport. Partial recycling of Cl and HCO3 presumably occurs through a Cl conductive pathway and Cl-HCO3 exchange, respectively, in the apical membrane. This results in net Na absorption, which accounts for most of the Isc observed under basal conditions. The effect of bumetanide on the basolateral membrane and the fact that Cl secretion occurs when HCO3 is absent suggests that Cl secretion involves a basolateral NaCl or Na-K-Cl cotransport system arranged in series with a Cl conductive pathway in the apical membrane.


1991 ◽  
Vol 261 (6) ◽  
pp. L456-L461 ◽  
Author(s):  
G. J. Tessier ◽  
T. R. Traynor ◽  
M. S. Kannan ◽  
S. M. O'Grady

When the equine tracheal epithelium is mounted in Ussing chambers and bathed in plasma-like Ringer solution, the tissue generates a lumen-negative transepithelial potential (PD) of 22 mV and a short-circuit current (Isc) of 70-200 microA/cm2. Mucosal addition of 10 microM histamine produces a transient increase in the Isc followed by a return to baseline or below. Mucosal addition of 2 microM diphenhydramine inhibits the Isc response to mucosal histamine, whereas 100 microM mucosal cimetidine produces no effect. The average initial increases in Isc over time for mucosal vs. serosal histamine addition are significantly different (17.32 +/- 2.8 and 3.76 +/- 0.69 microA/min, respectively). Pretreatment with mucosal amiloride significantly prolongs the effect of mucosal histamine on Isc over a 20-min period from 4.73 +/- 0.33 to 15.48 +/- 3.16 microA. When Cl is replaced by gluconate, mucosal histamine addition results in a gradual decrease in Isc and significantly reduces the effect of mucosal amiloride on Isc from 80.8% to 54.9%. Mucosal histamine inhibits the net transepithelial Na flux by 42% and stimulates the secretion of Cl by 106%. Subsequent addition of serosal bumetanide decreases net Cl secretion by 70% These results suggest that histamine stimulates bumetanide-sensitive Cl secretion and inhibits amiloride-sensitive Na absorption; these effects are mediated by H1 receptors at the apical membrane surface


2006 ◽  
Vol 291 (2) ◽  
pp. G246-G252 ◽  
Author(s):  
S. Leonhard-Marek ◽  
G. Breves ◽  
R. Busche

Active Na+ absorption across rumen epithelium comprises Na+/H+ exchange and a nonselective cation conductance (NSCC). Luminal chloride is able to stimulate Na+ absorption, which has been attributed to an interaction between Cl−/HCO3− and Na+/H+ exchangers. However, isolated rumen epithelial cells also express a Cl− conductance. We investigated whether Cl− has an additional effect on electrogenic Na+ absorption via NSCC. NSCC was estimated from short-circuit current ( Isc) across epithelia of goat and sheep rumen in Ussing chambers. Epithelial surface pH (pHs) was measured with 5- N-hexadecanoyl-aminofluorescence. Membrane potentials were measured with microelelectrodes. Luminal, but not serosal, Cl− stimulated the Ca2+ and Mg2+ sensitive Isc. This effect was independent of the replacing anion (gluconate or acetate) and of the presence of bicarbonate. The mean pHs of rumen epithelium amounted to 7.47 ± 0.03 in a low-Cl− solution. It was increased by 0.21 pH units when luminal Cl− was increased from 10 to 68 mM. Increasing mucosal pH from 7.5 to 8.0 also increased the Ca2+ and Mg2+ sensitive Isc and transepithelial conductance and reduced the fractional resistance of the apical membrane. Luminal Cl− depolarized the apical membrane of rumen epithelium. 5-Nitro-2-(3-phenylpropylamino)-benzoate reduced the divalent cation sensitive Isc, but only in low-Cl− solutions. The results show that luminal Cl− can increase the microclimate pH via apical Cl−/HCO3− or Cl−/OH− exchangers. Electrogenic Na+ absorption via NSCC increases with pH, explaining part of the Cl− effects on Na+ absorption. The data further show that the Cl− conductance of rumen epithelium must be located at the basolateral membrane.


1985 ◽  
Vol 248 (3) ◽  
pp. R346-R352
Author(s):  
P. L. Smith

Transepithelial flux studies and conventional intracellular microelectrode measurements were employed to examine the mechanisms of ion transport by the alkaline gland of the male skate, Raja erinacea. These studies reveal that the transepithelial potential is 6.9 +/- 0.6 mV, lumen reference, and that the transepithelial resistance is 140 omega . cm2. The short-circuit current across this epithelium is entirely accounted for by net secretion of Cl, whereas transepithelial active transport of Na does not appear to be present in this tissue. Cl secretion and/or short-circuit current are reduced by serosal furosemide and abolished when the bathing solution Na is replaced with choline or when ouabain is added to the serosal bathing solution. Intracellular microelectrode studies reveal that the apical membrane potential is -43 mV, cell interior negative to the mucosal bathing solution. The transepithelial resistance in these tissues was 103 +/- 12 omega . cm2 and the apparent fractional resistance, i.e., the ratio of the change in apical membrane potential to the change in transepithelial potential produced by passing current across the epithelium was 0.39 +/- 0.09. Ion substitution experiments demonstrated that the apical membrane is dominated by a large Cl conductance while the basolateral membrane contains a barium-sensitive potassium conductance. These results suggest that the mechanism of Cl secretion by the alkaline gland is similar to the mechanism described for a variety of Cl secretory epithelia.


1992 ◽  
Vol 263 (6) ◽  
pp. C1190-C1199 ◽  
Author(s):  
L. L. Clarke ◽  
A. M. Paradiso ◽  
R. C. Boucher

The mechanism by which receptors coupled to phospholipase C (PLC) induce Cl- secretion in amiloride-pretreated cultures of human nasal epithelial (HNE) cultures was investigated. Histamine (10(-4) M, basolateral administration) stimulated a rapid increase in equivalent short-circuit current, an index of Cl- secretion, that returned to baseline within 5 min. Intracellular recordings with double-barreled Cl(-)-selective microelectrodes showed that the apical and basolateral membrane potentials rapidly hyperpolarized, the fractional resistance of the apical membrane increased, and the transepithelial resistance decreased in response to histamine. Intracellular Cl- activity remained constant. Equivalent circuit analysis revealed that the early portion (< 0.9 min) of the Cl- secretory response was driven by an activation of a hyperpolarizing basolateral conductance, likely K+, whereas the later (> 0.9 min) phase of Cl- secretion reflects activation of the apical membrane Cl- conductance. Histamine raised intracellular Ca2+ (Ca2+i) measured by fura-2 in HNE with a potency similar to that observed for induction of Cl- secretion. Both intracellular release and plasma membrane influx pathways were identified, typical of receptor-mediated activation of PLC. The intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (15 microM), coupled with reduced bathing solution Ca2+, blunted the rise in Ca2+i and the net transepithelial Cl- secretory response to histamine. We conclude that 1) histamine induced Cl- secretion in HNE by a sequential mechanism: the rapid initial component reflects activation of the basolateral K+ conductance, and the later component reflects activation of an apical Cl- conductance; and 2) the level of Ca2+i may participate in the activation of both the basolateral and apical conductances.


1998 ◽  
Vol 275 (5) ◽  
pp. C1313-C1322 ◽  
Author(s):  
Michael D. DuVall ◽  
Yi Guo ◽  
Sadis Matalon

We examined the effects of H2O2on Cl− secretion across human colonic T84 cells grown on permeable supports and mounted in modified Ussing chambers. Forskolin-induced short-circuit current, a measure of Cl− secretion, was inhibited in a concentration-dependent fashion when monolayers were pretreated with H2O2for 30 min (30–100% inhibition between 500 μM and 5 mM). Moreover, H2O2inhibited 76% of the Cl−current across monolayers when the basolateral membranes were permeabilized with nystatin (200 μg/ml). When the apical membrane was permeabilized with amphotericin B, H2O2inhibited the Na+ current (a measure of Na+-K+-ATPase activity) by 68% but increased the K+ current more than threefold. In addition to its effects on ion transport pathways, H2O2also decreased intracellular ATP levels by 43%. We conclude that the principal effect of H2O2on colonic Cl− secretion is inhibitory. This may be due to a decrease in ATP levels following H2O2treatment, which subsequently results in an inhibition of the apical membrane Cl− conductance and basolateral membrane Na+-K+-ATPase activity. Alternatively, H2O2may alter Cl− secretion by direct action on the transporters or alterations in signal transduction pathways.


1991 ◽  
Vol 261 (6) ◽  
pp. R1533-R1541 ◽  
Author(s):  
W. Clauss ◽  
V. Dantzer ◽  
E. Skadhauge

The regulation of Na and Cl transport in hen colon by mineralocorticoids was investigated with isolated epithelia in vitro by histological and electrophysiological techniques. The electrogenic transport of Na and Cl was measured in Ussing chambers by the short-circuit current technique and was identified by the specific inhibitors amiloride and bumetanide or by the secretagogue theophylline. Hens were maintained either on low (LS)- or on high-NaCl diets (HS), and the plasma aldosterone (PA) levels of these groups were measured with radioimmunoassay. A group of HS hens received injections of aldosterone at a 6-h schedule before experiments. A group of LS hens was resalinated, and experiments were carried out at a 24-h interval for up to 3 days after resalination. The LS diet stimulated PA levels ninefold, compared with HS hens. Na transport was modulated by the hormonal stimulus in a way that the apical Na entry switched from an electrogenic Na-amino acid-hexose cotransport system completely to an amiloride-sensitive Na channel. Electrogenic Cl secretion was induced by theophylline and was inhibited by bumetanide. NaCl deprivation, resalination or aldosterone injection modulated electrogenic Cl secretion in parallel between 7 (HS) and 14.4 mu eq.cm-2.h-1 (LS), with pronounced alteration in tissue conductance. These findings reveal a new action of aldosterone that, besides stimulating Na absorption, also directly or indirectly modulates Cl secretion.


1995 ◽  
Vol 268 (2) ◽  
pp. C425-C433 ◽  
Author(s):  
M. J. Stutts ◽  
E. R. Lazarowski ◽  
A. M. Paradiso ◽  
R. C. Boucher

Luminal extracellular ATP evoked a bumetanide-sensitive short-circuit current in cultured T84 cell epithelia (90.2 +/- 18.2 microA/cm2 at 100 microM ATP, apparent 50% effective concentration, 11.5 microM). ATP appeared to increase the Cl- conductance of the apical membrane but not the driving force for Cl- secretion determined by basolateral membrane K+ conductance. Specifically, the magnitude of Cl- secretion stimulated by ATP was independent of basal current, and forskolin pretreatment abolished subsequent stimulation of Cl- secretion by ATP. Whereas ATP stimulated modest production of adenosine 3',5'-cyclic monophosphate (cAMP) by T84 cells, ATP caused smaller increases in intracellular Ca2+ and inositol phosphate activities than the Ca(2+)-signaling Cl- secretagogue carbachol. An inhibitor of 5'-nucleotidase, alpha,beta-methyleneadenosine 5'-diphosphate, blocked most of the response to luminal ATP. The adenosine receptor antagonist 8-(p-sulfophenyl)theophylline blocked both the luminal ATP-dependent generation of cAMP and Cl- secretion when administered to the luminal but not submucosal bath. These results demonstrate that the Cl- secretion stimulated by luminal ATP is mediated by a A2-adenosine receptor located on the apical cell membrane. Thus metabolism of extracellular ATP to adenosine regulates the activity of cystic fibrosis transmembrane conductor regulator (CFTR) in the apical membrane of polarized T84 cells.


1988 ◽  
Vol 255 (3) ◽  
pp. G286-G291 ◽  
Author(s):  
R. C. Orlando ◽  
N. A. Tobey ◽  
V. J. Schreiner ◽  
R. D. Readling

The transmural electrical potential difference (PD) was measured in vivo across the buccal mucosa of humans and experimental animals. Mean PD was -31 +/- 2 mV in humans, -34 +/- 2 mV in dogs, -39 +/- 2 mV in rabbits, and -18 +/- 1 mV in hamsters. The mechanisms responsible for this PD were explored in Ussing chambers using dog buccal mucosa. After equilibration, mean PD was -16 +/- 2 mV, short-circuit current (Isc) was 15 +/- 1 microA/cm2, and resistance was 1,090 +/- 100 omega.cm2, the latter indicating an electrically "tight" tissue. Fluxes of [14C]mannitol, a marker of paracellular permeability, varied directly with tissue conductance. The net fluxes of 22Na and 36Cl were +0.21 +/- 0.05 and -0.04 +/- 0.02 mueq/h.cm2, respectively, but only the Na+ flux differed significantly from zero. Isc was reduced by luminal amiloride, serosal ouabain, or by reducing luminal Na+ below 20 mM. This indicated that the Isc was determined primarily by active Na+ absorption and that Na+ traverses the apical membrane at least partly through amiloride-sensitive channels and exits across the basolateral membrane through Na+-K+-ATPase activity. We conclude that buccal mucosa is capable of active electrolyte transport and that this capacity contributes to generation of the buccal PD in vivo.


Sign in / Sign up

Export Citation Format

Share Document