Colchicine-induced redistribution of an apical membrane glycoprotein (gp330) in proximal tubules

1989 ◽  
Vol 257 (2) ◽  
pp. C397-C407 ◽  
Author(s):  
E. J. Gutmann ◽  
J. L. Niles ◽  
R. T. McCluskey ◽  
D. Brown

Factors governing the selective, polarized insertion of membrane proteins are poorly understood, but some studies have suggested that microtubules are involved in the generation and maintenance of cell polarity. We have examined by immunocytochemistry the effect of the microtubule-disrupting agent, colchicine, on the cellular distribution of an endogenous glycoprotein, gp330, which is normally inserted only into the apical plasma membrane of proximal tubule epithelial cells. In control rats, gp330 was localized in the brush border and in apical invaginations and vesicles. Six hours after injection of colchicine, however, vesicles containing gp330 were dispersed throughout the entire cytoplasm of the cell. Many vesicles were packed into basolateral infoldings, close to the plasma membrane, but there was no significant insertion of gp330 into the basolateral membrane. When rabbit anti-gp330 antiserum was injected intravenously into colchicine-treated rats, immune complexes appeared in the glomerular basement membrane but could not be detected in peritubular basement membranes. This supports the conclusion that colchicine treatment does not result in the insertion of gp330 into the basolateral plasma membrane of proximal tubule cells. Our results indicate that although microtubules are involved in the accumulation of gp330-containing vesicles at the apical pole of the cell, other factors must be required for fusion with the plasma membrane to occur.

2000 ◽  
Vol 11 (12) ◽  
pp. 2179-2189
Author(s):  
ARVID B. MAUNSBACH ◽  
HENRIK VORUM ◽  
TAE-HWAN KWON ◽  
SØREN NIELSEN ◽  
BRIAN SIMONSEN ◽  
...  

Abstract. Immunofluorescence analysis has revealed that electrogenic Na+/HCO3- (NBC1) is expressed in the proximal tubule of rat kidney and in the proximal and distal tubules of the salamander Ambystoma tigrinum kidney. The present study was undertaken to define the detailed subcellular localization of the NBC1 in rat and Ambystoma kidney using high-resolution immunoelectron microscopy. For this purpose, two rabbit polyclonal antibodies raised against amino acids 928 to 1035 and amino acids 1021 to 1035 of the C-terminus of rat kidney (rkNBC1) were developed. The affinity-purified antibodies revealed a strong band of approximately 140 kD in immunoblots of membranes from rat kidney cortex but no signal in membranes isolated from outer and inner medulla. Deglycosylation reduced the apparent molecular weight to approximately 120 kD, corresponding to the predicted molecular weight. A similar but weaker band was also present in membranes isolated from the lateral part of Ambystoma kidney. In rat kidney, immunohistochemistry confirmed the presence of rkNBC1 in convoluted segments of the proximal tubules. In ultrathin cryosections or Lowicryl HM20 sections from rat kidney cortex, distinct immunogold labeling was associated with the basolateral plasma membrane of segments S1 and S2 of proximal tubules, whereas in S3 no labeling was observed. The labeling density was similar at the basal and lateral plasma membrane and was specifically associated with the inner surface of the membrane consistent with the internal position of the C-terminus of the transporter. In contrast, rkNBC1 was absent from the apical plasma membrane and not observed in intracellular vesicles, including those closely associated with basolateral plasma membrane. In Ambystoma kidney, a weak labeling was present in the basolateral membrane of the proximal tubule and stronger labeling was observed in the late distal segment. The results demonstrate that rkNBC1 is expressed only in segment S1 and segment S2 of rat proximal tubule as well as Ambystoma proximal and late distal tubule and that rkNBC1 is present in both basal and lateral plasma membranes and absent in intracellular vesicles of the apical plasma membrane.


1996 ◽  
Vol 270 (6) ◽  
pp. F927-F936 ◽  
Author(s):  
D. Biemesderfer ◽  
J. A. Payne ◽  
C. Y. Lytle ◽  
B. Forbush

The Na-K-Cl cotransporter (NKCC or BSC) has been described in numerous secretory and reabsorptive epithelia and is an important part of the mechanism of NaCl reabsorption in both the mammalian and elasmobranch kidneys. We have recently developed a panel of four monoclonal antibodies (MAbs) raised to the 195-kDa Na-K-Cl cotransport protein of the shark rectal gland (sNKCC1), which is expressed along the basolateral plasma membrane of secretory cells in this tissue (29). Here, we report immunologic studies of the Na-K-Cl cotransporter in the kidney of the dogfish shark Squalus acanthias. Western blot analysis of shark renal microsomes using MAbs J3, J7, and J25 identified proteins of approximately 195 and 150 kDa, whereas MAb J4 was not reactive. To define the cellular and subcellular distribution of the cotransport protein, immunofluorescence and immunoelectron microscopy studies were performed on fixed kidneys. Immunofluorescence microscopy on semithin (0.5-micron) cryosections demonstrated that MAbs J3, J7, and J25 intensely stained the apical plasma membrane of all distal tubule segments. Weak staining was also seen along the basolateral membrane of most distal nephrons. Immunoelectron microscopy confirmed this observation and showed that some of these segments were morphologically similar to diluting segments from other species. MAbs also reacted with the brush border and, to a lesser extent, the basolateral membrane of proximal tubules. This study supports the hypothesis that the lateral bundle zone of the elasmobranch kidney functions as a countercurrent exchanger and is consistent with the presence of multiple isoforms of the Na-K-Cl cotransporter in the shark kidney.


2017 ◽  
Vol 28 (21) ◽  
pp. 2843-2853 ◽  
Author(s):  
Adrian J. Giovannone ◽  
Elena Reales ◽  
Pallavi Bhattaram ◽  
Alberto Fraile-Ramos ◽  
Thomas Weimbs

Syntaxin 3 (Stx3), a SNARE protein located and functioning at the apical plasma membrane of epithelial cells, is required for epithelial polarity. A fraction of Stx3 is localized to late endosomes/lysosomes, although how it traffics there and its function in these organelles is unknown. Here we report that Stx3 undergoes monoubiquitination in a conserved polybasic domain. Stx3 present at the basolateral—but not the apical—plasma membrane is rapidly endocytosed, targeted to endosomes, internalized into intraluminal vesicles (ILVs), and excreted in exosomes. A nonubiquitinatable mutant of Stx3 (Stx3-5R) fails to enter this pathway and leads to the inability of the apical exosomal cargo protein GPRC5B to enter the ILV/exosomal pathway. This suggests that ubiquitination of Stx3 leads to removal from the basolateral membrane to achieve apical polarity, that Stx3 plays a role in the recruitment of cargo to exosomes, and that the Stx3-5R mutant acts as a dominant-negative inhibitor. Human cytomegalovirus (HCMV) acquires its membrane in an intracellular compartment and we show that Stx3-5R strongly reduces the number of excreted infectious viral particles. Altogether these results suggest that Stx3 functions in the transport of specific proteins to apical exosomes and that HCMV exploits this pathway for virion excretion.


1999 ◽  
Vol 10 (10) ◽  
pp. 3449-3461 ◽  
Author(s):  
Sven C. D. van IJzendoorn ◽  
Dick Hoekstra

In polarized HepG2 cells, the sphingolipids glucosylceramide and sphingomyelin (SM), transported along the reverse transcytotic pathway, are sorted in subapical compartments (SACs), and subsequently targeted to either apical or basolateral plasma membrane domains, respectively. In the present study, evidence is provided that demonstrates that these sphingolipids constitute separate membrane domains at the luminal side of the SAC membrane. Furthermore, as revealed by the use of various modulators of membrane trafficking, such as calmodulin antagonists and dibutyryl-cAMP, it is shown that the fate of these separate sphingolipid domains is regulated by different signals, including those that govern cell polarity development. Thus under conditions that stimulate apical plasma membrane biogenesis, SM is rerouted from a SAC-to-basolateral to a SAC-to-apical pathway. The latter pathway represents the final leg in the transcytotic pathway, followed by the transcytotic pIgR–dIgA protein complex. Interestingly, this pathway is clearly different from the apical recycling pathway followed by glucosylceramide, further indicating that randomization of these pathways, which are both bound for the apical membrane, does not occur. The consequence of the potential coexistence of separate sphingolipid domains within the same compartment in terms of “raft” formation and apical targeting is discussed.


1992 ◽  
Vol 283 (2) ◽  
pp. 553-560 ◽  
Author(s):  
J A Ellis ◽  
M R Jackman ◽  
J P Luzio

A subcellular fractionation method to isolate simultaneously apical and basolateral plasma membrane fractions from the human adenocarcinoma cell line Caco-2, grown on filter supports, is described. The method employs sucrose-density-gradient centrifugation and differential precipitation. The apical membrane fraction was enriched 14-fold in sucrase-isomaltase and 21-fold in 5′-nucleotidase compared with the homogenate. The basolateral membrane fraction was enriched 20-fold relative to the homogenate in K(+)-stimulated p-nitrophenylphosphatase. Alkaline phosphatase was enriched 15-fold in the apical membrane fraction and 3-fold in the basolateral membrane fraction. Analytical density-gradient centrifugation showed that this enzyme was a true constituent of both fractions, and experiments measuring alkaline phosphatase release following treatment with phosphatidylinositol-specific phospholipase C showed that in both membrane fractions the enzyme was glycosyl-phosphatidylinositol-linked. There was very little contamination of either membrane fraction by marker enzymes of the Golgi complex, mitochondria or lysosomes. Both membrane fractions were greater than 10-fold purified with respect to the endoplasmic reticulum marker enzyme alpha-glucosidase. Protein composition analysis of purified plasma membrane fractions together with domain-specific cell surface biotinylation experiments revealed the presence of both common and unique integral membrane proteins in each plasma membrane domain. The post-synthetic transport of endogenous integral plasma membrane proteins was examined using the devised subcellular fractionation procedure in conjunction with pulse-chase labelling experiments and immunoprecipitation. Five common integral membrane proteins immunoprecipitated by an antiserum raised against a detergent extract of the apical plasma membrane fraction were delivered with the same time course to each cell-surface domain.


2017 ◽  
Author(s):  
Adrian J. Giovannone ◽  
Elena Reales ◽  
Pallavi Bhattaram ◽  
Alberto Fraile-Ramos ◽  
Thomas Weimbs

AbstractSyntaxin 3 (Stx3), a SNARE protein located and functioning at the apical plasma membrane of epithelial cells, is required for epithelial polarity. A fraction of Stx3 is localized to late endosomes / lysosomes though how it traffics there and its function in these organelles is unknown. Here we report that Stx3 undergoes mono - ubiquitination in a conserved polybasic domain. Stx3 present at the basolateral – but not the apical - plasma membrane is rapidly endocytosed, targeted to endosomes, internalized into intraluminal vesicles (ILVs) and excreted in exosomes. A non - ubiquitinatable mutant of Stx3 (Stx3 - 5R) fails to enter this pathway and leads to the inability of the apical exosomal cargo protein GPRC5B to enter the ILV / exosomal pathway. This suggests that ubiquitination of Stx3 leads to removal from the basolateral membrane to achieve apical polarity, that Stx3 plays a role in the recruitment of cargo to exosomes, and that the Stx3 - 5R mutant acts as a dominant - negative inhibitor. Human cytomegalovirus (HCMV) acquires its membrane in an intracellular compartment and we show that Stx3 - 5R strongly reduces the number of excreted infectious viral particles. Altogether these results suggest that Stx3 functions in the transport of specific proteins to apical exosomes and that HCMV exploit this pathway for virion excretion.


1986 ◽  
Vol 251 (3) ◽  
pp. F490-F498 ◽  
Author(s):  
E. Bello-Reuss ◽  
M. R. Weber

Primary confluent monolayers were grown from proximal tubule fragments of rabbit kidneys. The fragments were obtained by gradient centrifugation and seeded on an ad hoc dish whose bottom was a permeable and transparent collagen membrane. The culture medium was a mixture of 50% Ham's F-12 and 50% Dulbecco's modified Eagle's medium supplemented with insulin, transferrin, ethanolamine, sodium selenite, and amino acids. The monolayers were studied at 6-14 days after seeding. Transmission electron microscopy revealed cuboidal cells 8.5-10.5 microns high, with a 1.5 to 2.5-microns apical brush border, abundant mitochondria, vacuoles, lysosomes, and irregular basal interdigitating processes. Cyclic AMP synthesis was stimulated by parathyroid hormone and was insensitive to vasopressin and isoproterenol. Electrophysiological studies performed with the same physiological salt solution on both sides revealed a transepithelial voltage of -2.6 +/- 0.6 mV (n = 10) and a basolateral membrane voltage of -51.0 +/- 4.5 mV (n = 13), both referred to the basal solution. The transepithelial electrical resistance was 7 +/- 2 omega X cm2. The apical membrane depolarized on addition of glucose to the apical side and hyperpolarized on removal of glucose. Changes in apical membrane voltage on addition of varying glucose concentrations (at [Na] = 135 mM, 37 degrees C) demonstrate the presence of a glucose transport system with an apparent Km of 3.54 +/- 0.54 and a Vmax of 7.2 +/- 0.4 mV. Thus this preparation exhibits morphological and electrophysiological characteristics of proximal tubule cells; these studies demonstrate the feasibility of the use of intracellular microelectrode techniques to study the transport properties of cultured epithelia.


2007 ◽  
Vol 293 (4) ◽  
pp. F1308-F1313 ◽  
Author(s):  
Mitsi A. Blount ◽  
Janet D. Klein ◽  
Christopher F. Martin ◽  
Dmitry Tchapyjnikov ◽  
Jeff M. Sands

UT-A1 is regulated by vasopressin and is localized to the apical membrane and intracellular compartment of inner medullary collecting duct (IMCD) cells. UT-A3 is also expressed in the IMCD and is regulated by forskolin in heterologous systems. The goal of the present study is to investigate mechanisms by which vasopressin regulates UT-A3 in rat IMCD. In fresh suspensions of rat IMCD, forskolin increases the phosphorylation of UT-A3, similar to UT-A1. Biotinylation studies indicate that UT-A3 is located in the plasma membrane. Forskolin treatment increases the abundance of UT-A3 in the plasma membrane similar to UT-A1. However, these two transporters do not form a complex through a protein-protein interaction, suggesting that transporter function is unique to each protein. While immunohistochemistry localized UT-A3 to the basal and lateral membranes, a majority of the staining was cytosolic. Immunohistochemistry of vasopressin-treated rat kidney sections also localized UT-A3 primarily to the cytosol with basal and lateral membrane staining but also showed some apical membrane staining in some IMCD cells. This suggests that under normal conditions, UT-A3 functions as the basolateral transporter but in a high cAMP environment, the transporter may move from the cytosol to all plasma membranes to increase urea flux in the IMCD. In summary, this study confirms that UT-A3 is located in the inner medullary tip where it is expressed in the basolateral membrane, shows that UT-A3 is a phosphoprotein in rat IMCD that can be trafficked to the plasma membrane independent of UT-A1, and suggests that vasopressin may induce UT-A3 expression in the apical plasma membrane of IMCD.


1997 ◽  
Vol 273 (6) ◽  
pp. F1003-F1012 ◽  
Author(s):  
Dennis Brown ◽  
Richard Lee ◽  
Joseph V. Bonventre

After ischemia and reperfusion, severe alterations in the cytoskeletal organization of renal tubular epithelial cells have been reported. These effects, accompanied by a modification in the polarized distribution of some membrane transport proteins, are especially evident in the proximal tubule. In normal proximal tubule cells, actin is concentrated in apical brush border microvilli, along with the actin-binding protein villin. Because villin plays an important role in actin bundling and in microvillar assembly but can also act as an actin-fragmenting protein at higher calcium concentrations, we examined the effects of ischemic injury and reperfusion on the distribution of villin and actin in proximal tubule cells of rat kidney. Using specific antibodies against villin and actin, we show that these proteins redistribute in parallel from the apical to the basolateral plasma membrane within 1 h of reperfusion after ischemia. Ischemia alone had no effect on the staining pattern. Repolarization of villin to the apical membrane begins within hours after reperfusion with enhanced apical localization over time during the period of regeneration. This apical repolarization of villin is accompanied by the migration of actin back to the apical membrane. These results show not only that villin may be involved in the initial disruption of the actin cytoskeleton during reperfusion injury but also that its migration back to the apical domain of these cells accompanies the reestablishment of a normal actin distribution in the brush border.


1992 ◽  
Vol 262 (1) ◽  
pp. F47-F54 ◽  
Author(s):  
P. A. Preisig

In vivo microperfusion was used to examine the mechanism of luminal flow rate dependence of proximal tubule acidification. Luminal flow rate was acutely changed between 5 and 40 nl/min, while luminal and peritubular capillary composition were held constant. With inhibition of basolateral membrane base transport by peritubular 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), cell pH (pHi) provides a sensitive index of apical membrane H secretory activity. At a luminal perfusate [HCO3] of 25 mM, progressive increases in luminal flow rate (5----15----25----40 nl/min) caused progressive increases in pHi. This effect was of a smaller magnitude with a luminal perfusate [HCO3] of 60 mM and was further decreased at a luminal perfusate [HCO3] of 100 mM. This pattern of diminished flow rate dependence at higher luminal [HCO3] is consistent with the presence of a luminal unstirred layer, whose composition can be modified by luminal flow rate. The activity of the apical membrane Na-H antiporter, assayed as the initial rate of pHi recovery from an acid load in the presence of peritubular DIDS, was faster at 40 compared with 5 nl/min. Basolateral membrane Na-3HCO3 symporter activity, assayed as the initial rate of pHi recovery from an alkali load in the absence of luminal and peritubular chloride, was faster at 40 compared with 5 nl/min. This effect was eliminated by luminal amiloride, suggesting an indirect effect of flow mediated by changes in pHi secondary to flow rate-dependent changes in apical membrane Na-H antiporter activity. In summary, increases in luminal flow rate directly increase apical membrane H secretion, possibly by modification of a luminal unstirred layer.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document