luminal side
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 35)

H-INDEX

32
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Sören Alsleben ◽  
Ralf Kölling

The endosomal sorting complex required for transport (ESCRT)-III mediates budding and abscission of intraluminal vesicles (ILVs) into multivesicular endosomes. To further define the role of the ESCRT-III associated protein Mos10/Vps60 in ILV formation, we screened for new interaction partners by SILAC/MS. Here, we focused on the newly identified interaction partner Vps68. Our data suggest that Vps68 cooperates with ESCRT-III in ILV formation. The deletion of VPS68 caused a sorting defect similar to the SNF7 deletion, when the cargo load was high. The composition of ESCRT-III was altered, the level of core components was higher and the level of associated proteins was lower in the deletion strain. This suggests that a shift occurs from an active complex to a disassembly competent complex and that this shift is blocked in the Δvps68 strain. We present evidence that during this shift Snf7 is replaced by Mos10. Vps68 has an unusual membrane topology. Two of its potential membrane helices are amphipathic helices localized to the luminal side of the endosomal membrane. Based on this membrane topology we propose that Vps68 and ESCRT-III cooperate in the abscission step by weakening the luminal and cytosolic leaflets of the bilayer at the abscission site.


2021 ◽  
Author(s):  
Funso E. Ogunmolu ◽  
Shoeib Moradi ◽  
Vladimir A. Volkov ◽  
Chris van Hoorn ◽  
Jingchao Wu ◽  
...  

Centrioles are microtubule-based organelles required for the formation of centrosomes and cilia. Centriolar microtubules, unlike their cytosolic counterparts, grow very slowly and are very stable. The complex of centriolar proteins CP110 and CEP97 forms a cap that stabilizes the distal centriole end and prevents its over-elongation. Here, we used in vitro reconstitution assays to show that whereas CEP97 does not interact with microtubules directly, CP110 specifically binds microtubule plus ends, potently blocks their growth and induces microtubule pausing. Cryo-electron tomography indicated that CP110 binds to the luminal side of microtubule plus ends and reduces protofilament peeling. Furthermore, CP110 directly interacts with another centriole biogenesis factor, CPAP/SAS-4, which tracks growing microtubule plus ends, slows down their growth and prevents catastrophes. CP110 and CPAP synergize in inhibiting plus-end growth, and this synergy depends on their direct binding. Together, our data reveal a molecular mechanism controlling centriolar microtubule plus-end dynamics and centriole biogenesis.


Author(s):  
Sayantan Biswas ◽  
Sarifuddin . ◽  
Prashanta Kumar Mandal

Abstract In this paper, we investigate endovascular delivery to get a step ahead of the pharmacological limitations it has due to the complexity of dealing with a patient-specific vessel through a mathematical model. We divide the domain of computation into four sub-domains: the lumen, the lumen-tissue interface, the upper tissue and the lower tissue which are extracted from an asymmetric atherosclerotic image derived by the intravascular ultrasound (IVUS) technique. The injected drug at the luminal inlet is transported with the streaming blood which is considered Newtonian. An irreversible uptake kinetics of the injected drug at the lumen-tissue interface from the luminal side to the tissue domains is assumed. Subsequently, the drug is dispersed within the tissue followed by its retention in the extracellular matrix (ECM) and by receptor-mediated binding. The Marker and Cell (MAC) method has been leveraged to get a quantitative insight into the model considered. The effect of the wall absorption parameter on the concentration of all drug forms (free as well as two-phase bound) has been thoroughly investigated, and some other important factors, such as the averaged concentration, the tissue content, the fractional effect, the concentration variance and the effectiveness of drug have been graphically analyzed to gain a clear understanding of endovascular delivery. The simulated results predict that with increasing values of the absorption parameter, the averaged concentrations of all drug forms do decrease. An early saturation of binding sites takes place for smaller values of the absorption parameter, and also rapid saturation of ECM binding sites occurs as compared to receptor binding sites. Results also predict the influence of surface roughness as well as asymmetry of the domain about the centerline on the distribution and retention of drug. A thorough sensitivity analysis has been carried out to determine the influence of some parameters involved.


2021 ◽  
Author(s):  
Yoko Itakura ◽  
Yasuko Hasegawa ◽  
Yurika Kikkawa ◽  
Yuina Murakami ◽  
Chiaki Nagai-Okatani ◽  
...  

Abstract Heart failure is caused by various factors, making its underlying pathogenic mechanisms difficult to identify, and tends to worsen over time. Early diagnosis of cardiovascular disease is the key for treatment to promote healthy life. To detect the structural and functional molecular changes associated with cardiovascular disease, we focused on glycans, which reflect the type and state of cells. We investigated glycan localization in the cardiac tissue of normal mice and their alterations during aging using an evanescent-filed lectin microarray, a technique based on lectin-glycan interaction, and lectin staining. The glycan profiles in the left ventricle showed differences between the luminal side (medial) and the wall side (lateral) region. The former area was characterized by the presence of sialic acid residues.Moreover, age-related changes in glycan profiles were observed earlier in the medial region. The difference in the age-related decrease of a-galactose stained with griffonia simplicifolia lectin-IB4 in different region of the leftventricle suggested spatiotemporal changes in microvessels. The glycan profile, which retains diverse glycan structures, is supported by many cell populations and maintains cardiac function. Glycan localization and changes are expected to be developed as a marker of the signs and symptoms of heart failure in the future.


2021 ◽  
Author(s):  
Yun Hee Chang ◽  
Boris I Sheftel ◽  
Bjarke Jensen

Shrews occupy the lower extreme of the seven orders of magnitude mammals range in size. Their hearts are large relative to body weight and heart rate can exceed a thousand beats a minute. To investigate whether cardiac traits that are typical mammalian scale to these extremes, we assessed the heart of three species of shrew (genus Sorex) following the sequential segmental analysis developed for human hearts. Using micro-computed tomography we describe the overall structure and find, in agreement with previous studies, a large and elongate ventricle. The atrial and ventricular septums and the atrioventricular and arterial valves are typically mammalian. The ventricular walls comprise mostly compact myocardium and especially the right ventricle has few trabeculations on the luminal side. A developmental process of compaction is thought to reduce trabeculations in mammals, but in embryonic shrews the volume of trabeculations increase for every gestational stage, only slower than the compact volume. By expression of Hcn4, we identify a sinus node and an atrioventricular conduction axis which is continuous with the ventricular septal crest. Outstanding traits include pulmonary venous sleeve myocardium that reaches farther into the lungs than in any other mammals. Typical proportions of coronary arteries-to-aorta do not scale and the shrew coronary arteries are proportionally enormous, presumably to avoid the high resistance to blood flow of narrow vessels. In conclusion, most cardiac traits do scale to the miniscule shrews. The shrew heart, nevertheless, stands out by its relative size, elongation, proportionally large coronary vessels, and extent of pulmonary venous myocardium.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu-Jie Chen ◽  
Jeffrey Knupp ◽  
Anoop Arunagiri ◽  
Leena Haataja ◽  
Peter Arvan ◽  
...  

AbstractThe reticulon-3 (RTN3)-driven targeting complex promotes clearance of misfolded prohormones from the endoplasmic reticulum (ER) for lysosomal destruction by ER-phagy. Because RTN3 resides in the cytosolic leaflet of the ER bilayer, the mechanism of selecting misfolded prohormones as ER-phagy cargo on the luminal side of the ER membrane remains unknown. Here we identify the ER transmembrane protein PGRMC1 as an RTN3-binding partner. Via its luminal domain, PGRMC1 captures misfolded prohormones, targeting them for RTN3-dependent ER-phagy. PGRMC1 selects cargos that are smaller than the large size of other reported ER-phagy substrates. Cargos for PGRMC1 include mutant proinsulins that block secretion of wildtype proinsulin through dominant-negative interactions within the ER, causing insulin-deficiency. Chemical perturbation of PGRMC1 partially restores WT insulin storage by preventing ER-phagic degradation of WT and mutant proinsulin. Thus, PGRMC1 acts as a size-selective cargo receptor during RTN3-dependent ER-phagy, and is a potential therapeutic target for diabetes.


2021 ◽  
Vol 22 (19) ◽  
pp. 10345
Author(s):  
Carlos Navarro-Retamal ◽  
Stephan Schott-Verdugo ◽  
Holger Gohlke ◽  
Ingo Dreyer

Two Pore Channels (TPCs) are cation-selective voltage- and ligand-gated ion channels in membranes of intracellular organelles of eukaryotic cells. In plants, the TPC1 subtype forms the slowly activating vacuolar (SV) channel, the most dominant ion channel in the vacuolar membrane. Controversial reports about the permeability properties of plant SV channels fueled speculations about the physiological roles of this channel type. TPC1 is thought to have high Ca2+ permeability, a conclusion derived from relative permeability analyses using the Goldman–Hodgkin–Katz (GHK) equation. Here, we investigated in computational analyses the properties of the permeation pathway of TPC1 from Arabidopsis thaliana. Using the crystal structure of AtTPC1, protein modeling, molecular dynamics (MD) simulations, and free energy calculations, we identified a free energy minimum for Ca2+, but not for K+, at the luminal side next to the selectivity filter. Residues D269 and E637 coordinate in particular Ca2+ as demonstrated in in silico mutagenesis experiments. Such a Ca2+-specific coordination site in the pore explains contradicting data for the relative Ca2+/K+ permeability and strongly suggests that the Ca2+ permeability of SV channels is largely overestimated from relative permeability analyses. This conclusion was further supported by in silico electrophysiological studies showing a remarkable permeation of K+ but not Ca2+ through the open channel.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rocío Moreno-Cañadas ◽  
Laura Luque-Martín ◽  
Alicia G. Arroyo

Patrolling monocytes (PMo) are the organism’s preeminent intravascular guardians by their continuous search of damaged endothelial cells and harmful microparticles for their removal and to restore homeostasis. This surveillance is accomplished by PMo crawling on the apical side of the endothelium through regulated interactions of integrins and chemokine receptors with their endothelial ligands. We propose that the search mode governs the intravascular motility of PMo in vivo in a similar way to T cells looking for antigen in tissues. Signs of damage to the luminal side of the endothelium (local death, oxidized LDL, amyloid deposits, tumor cells, pathogens, abnormal red cells, etc.) will change the diffusive random towards a Lèvy-like crawling enhancing their recognition and clearance by PMo damage receptors as the integrin αMβ2 and CD36. This new perspective can help identify new actors to promote unique PMo intravascular actions aimed at maintaining endothelial fitness and combating harmful microparticles involved in diseases as lung metastasis, Alzheimer’s angiopathy, vaso-occlusive disorders, and sepsis.


2021 ◽  
Author(s):  
Vinay V. Eapen ◽  
Sharan Swarup ◽  
Melissa Hoyer ◽  
Harper not provided JW

Lysophagy-the selective elimination of damaged lysosomes by the autophagy pathway-is a critical housekeeping mechanism in cells. This pathway surveils lysosomes and selectively demarcates terminally damaged lysosomes for elimination. Among the most upstream signaling proteins in this pathway are the glycan binding proteins-Galectins-which recognize N and O linked glycan chains on the luminal side of transmembrane lysosomal proteins. These glycosyl modifications are only accessible to galectin proteins upon extensive lysosomal membrane rupture and serve as a sensitive measure of lysosomal damage and eventual clearance by selective autophagy. Indeed, prior work has shown that immunofluorescence of Galectin-3 serves as a convenient proxy for lysophagic flux in tissue culture cells (Aits et al., 2015; Maejima et al., 2013). Here we describe our method for monitoring galectin-3 puncta clearance as a proxy for turnover of damaged lysosomes via immunofluorescence and confocal imaging.


2021 ◽  
Author(s):  
Vinay V. Eapen ◽  
Sharan Swarup ◽  
Melisa Hoyer ◽  
Harper JW

Lysophagy-the selective elimination of damaged lysosomes by the autophagy pathway-is a critical housekeeping mechanism in cells. This pathway surveils lysosomes and selectively demarcates terminally damaged lysosomes for elimination. Among the most upstream signaling proteins in this pathway are the glycan binding proteins-Galectins-which recognize N and O linked glycan chains on the luminal side of transmembrane lysosomal proteins. These glycosyl modifications are only accessible to galectin proteins upon extensive lysosomal membrane rupture and serve as a sensitive measure of lysosomal damage and eventual clearance by selective autophagy. Indeed, prior work has shown that immunofluorescence of Galectin-3 serves as a convenient proxy for lysophagic flux in tissue culture cells (Aits et al., 2015; Maejima et al., 2013). Here we describe a facile method for monitoring lysophagy using the acid sensitive fluorophore mKeima, affixed onto Galectin-3, which allows for the monitoring of lysophagic flux by Flow cytometry, Western blotting or Confocal imaging. This method, which we have termed Lyso-Keima, serves as a facile and quantitative assay for monitoring lysophagy in tissue culture cells.


Sign in / Sign up

Export Citation Format

Share Document