Sodium transport and intracellular sodium activity in cultured human nasal epithelium

1991 ◽  
Vol 261 (2) ◽  
pp. C319-C331 ◽  
Author(s):  
N. J. Willumsen ◽  
R. C. Boucher

Human airway epithelia are predominantly Na(+)-absorbing epithelia. To investigate the mechanisms for Na+ absorption across airway epithelia, the driving forces and paths for Na+ translocation across each membrane were examined with double-barreled Na(+)-selective microelectrodes in cultured human nasal epithelium (HNE). Under control conditions, intracellular Na+ activity (acNa) was 23 +/- 1 mM (n = 44 preparations, 393 impalements). Amiloride (10(-4) M) hyperpolarized the apical membrane and increased the fractional apical membrane resistance but did not affect acNa. Exposure to Na(+)-free luminal solution induced bioelectric responses similar to amiloride but also reduced acNa to 8 +/- 1 mM. Reduction of luminal Na+ concentration ([Na+]) in the presence of amiloride also reduced acNa without further changes in bioelectric parameters. Reduction of serosal [Na+] decreased aNac, a response blocked by bumetanide (10(-4) M). Ouabain (10(-4) M, serosal) led to a reduction in equivalent short-circuit current (Ieq) and increase in acNa. We conclude that 1) acNa is higher in HNE than in most mammalian epithelial cells, 2) the apical membrane expresses a conductive Na+ path, and 3) the basolateral membrane transports Na+ via the Na(+)-K(+)-adenosinetriphosphatase and a Na(+)-K(+)-2Cl- cotransport system.

1992 ◽  
Vol 262 (3) ◽  
pp. C644-C655 ◽  
Author(s):  
L. L. Clarke ◽  
A. M. Paradiso ◽  
S. J. Mason ◽  
R. C. Boucher

Human nasal epithelium (HNE) is a Na+ absorptive epithelium but establishes a baseline Cl- secretory current in the presence of amiloride (10(-4) M, luminal). We compared the effects of an inflammatory mediator, bradykinin (BK), on ion transport in primary cultures of HNE using double-barreled Cl(-)-selective microelectrodes. In untreated HNE, BK (10(-5) M) transiently increased the equivalent short-circuit current (Ieq). Maximal Ieq occurred with hyperpolarization of the transepithelial potential difference (Vt), which was associated with hyperpolarization and decreased resistance of the basolateral membrane; a subsequent depolarization of Vt was observed that was associated with depolarization and decreased resistance of the apical membrane. Removal of bath Cl- did not affect the BK-induced Ieq response. In amiloride-treated HNE, the electrical pattern of the BK-induced response was identical, but the magnitude of the Ieq was reduced by 54% and the change in Ieq could be abolished by removal of bath Cl-. Equivalent-circuit analysis of the response in amiloride-treated tissues indicated activation of a hyperpolarizing conductance in the basolateral membrane, followed 20-30 s later by activation of an apical Cl- conductance. We conclude that BK stimulates both Na+ absorption in untreated HNE and Cl- secretion in amiloride-treated HNE by activating a basolateral (K+) conductance. Analysis of the entire Ieq response under both conditions also suggested that BK induces a delayed activation of apical membrane Na+ and Cl- conductances.


1997 ◽  
Vol 272 (3) ◽  
pp. C931-C936 ◽  
Author(s):  
H. Bouritius ◽  
J. A. Groot

We studied the effects of stimulation of the apical adenosine receptor on ion transport by HT29cl.19A cells with the conventional microelectrode technique. Adenosine (100 microM) caused an increase in the transepithelial potential (3.6 +/- 0.4 mV) and equivalent short-circuit current (I(sc), 21 +/- 3 microA/cm2), a transient depolarization of the apical membrane potential (14 +/- 2 mV), and a decrease in the apical membrane resistance. The increase in I(sc) was additive to the effect of forskolin or basolateral addition of a maximal concentration of adenosine. Bumetanide, applied after adenosine, caused a further depolarization (7 +/- 2 mV) concomitant with a decrease in I(sc) (-13 +/- 2 microA/cm2) and an increase in the basolateral membrane resistance. Substitution of Cl- with gluconate or Na+ with N-methylglucamine reduced the response to adenosine by >60%. The response was also reduced by a low concentration of amiloride. We conclude that stimulation of the apical adenosine receptor activated a cation conductance in the apical membrane.


1985 ◽  
Vol 249 (5) ◽  
pp. C421-C429 ◽  
Author(s):  
J. Tang ◽  
F. J. Abramcheck ◽  
W. Van Driessche ◽  
S. I. Helman

Epithelia of frog skin bathed either symmetrically with a sulfate-Ringer solution or bathed asymmetrically and depolarized with a 112 mM K+ basolateral solution (Kb+) were studied with intracellular microelectrode techniques. Kb+ depolarization caused an initial decrease of the short-circuit current (Isc) with a subsequent return of the Isc toward control values in 60-90 min. Whereas basolateral membrane resistance (Rb) and voltage were decreased markedly by high [Kb+], apical membrane electrical resistance (Ra) was decreased also. After 60 min, intracellular voltage averaged -27.3 mV, transcellular fractional resistance (fRa) was 86.8%, and Ra and Rb were decreased to 36.1 and 13.0%, of their control values, respectively. Amiloride-induced noise analysis of the apical membrane Na+ channels revealed that Na+ channel density was increased approximately 72% while single-channel Na+ current was decreased to 39.9% of control, roughly proportional to the decrease of apical membrane voltage (34.0% of control). In control and Kb+-depolarized epithelia, the Na+ channel density exhibited a phenomenon of autoregulation. Inhibition of Na+ entry (by amiloride) caused large increases of Na+ channel density toward saturating values of approximately 520 X 10(6) channels/cm2 in Kb+-depolarized tissues.


1989 ◽  
Vol 256 (2) ◽  
pp. C226-C233 ◽  
Author(s):  
N. J. Willumsen ◽  
R. C. Boucher

Cystic fibrosis (CF) airway epithelia express a defect in adenosine 3',5'-cyclic monophosphate (cAMP)-dependent regulation of apical membrane Cl- channels. Recent patch-clamp studies have raised the possibility that Ca2+ -dependent mechanisms for the activation of Cl- secretion may be preserved in CF airway epithelia. To determine 1) whether intact normal (N1) and CF airway epithelia exhibit a Ca2+ -dependent mechanism for activation of Cl- secretion and 2) whether Ca2+ -dependent mechanism for activation of Cl- secretion and 2) whether Ca2+ -dependent mechanisms initiate Cl- secretion via activation of an apical membrane Cl- conductance (GCl-), nasal epithelia from N1 and CF subjects were cultured on collagen membranes, and responses to isoproterenol or Ca2- ionophores [A23187 10(-6) M; ionomycin (10(-5)M)] were measured with transepithelial and intracellular techniques. Isoproterenol induced activation of an apical membrane GCl- in N1 cultures but was ineffective in CF. In contrast, in both N1 and CF amiloride-pretreated cultures, A23187 induced an increase in the equivalent short-circuit current that was associated with an activation of an apical membrane Gc1- and was bumetanide inhibitable. A23187 addition during superfusion of the lumen with a low Cl- (3 mM) solution reduced intracellular Cl- activity of CF cells. A Ca2+ ionophore of different selectivity properties, ionomycin, was also an effective Cl- secretagogue in both N1 and CF cultures. We conclude that 1) the A23187 induced Cl- secretion via activation of an apical GCl- in N1 human nasal epithelium, and 2) in contrast to an isoproterenol-dependent path, a Ca2+ -dependent path for GCl- activation is preserved in CF epithelia.


1990 ◽  
Vol 258 (2) ◽  
pp. R409-R417 ◽  
Author(s):  
S. C. Hebert ◽  
P. A. Friedman

Diluting segments from the bundle zone of the dogfish shark kidney were perfused in vitro and the electrophysiological characteristics of this segment investigated using conventional microelectrodes and cable analysis. In 21 tubules perfused with symmetrical Ringer solutions the average transepithelial voltage (Vte), transepithelial conductance (Gte), and equivalent short circuit current (Isc) were 8.7 +/- 0.6 mV, 91.3 +/- 10.2 mS/cm2, and 641 +/- 48 microA/cm2, respectively. Microelectrode impalements in 52 cells yielded values for the basolateral membrane voltage (Vb) and an estimated apical membrane fractional resistance (fRa) of -57.5 +/- 1.3 mV and 0.896 +/- 0.008, respectively. All of these parameters were distributed in a Gaussian manner. Liminal furosemide (10(-4) M) abolished Isc, hyperpolarized apical membrane voltage (Va) and Vb, increased Gte, and reduced fRa. The apical membrane was predominantly conductive to K+: increasing luminal K+ from 5 to 49.7 mM resulted in an apical depolarization of 41.2 mV and a fall in fRa and luminal Ba2+ (1 mM) depolarized Va by 14.3 mV and increased fRa. The apical transference number for K+ was 0.74 +/- 0.07. The cellular and paracellular resistances were estimated from the effects of luminal Ba2+ on fRa and Gte. The cell conductance represented approximately 45% of Gte, with the primary resistance barrier located at the apical membrane: apical membrane resistance was 59.7 +/- 16.0 and basolateral membrane resistance was 5.9 +/- 2.3 omega.cm2. From these resistance values together with the passive permeability (PNa/PCl) of 2.5 determined previously, the ratio of net Cl- absorption to net transcellular Na+ absorption was determined to be 2.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 255 (3) ◽  
pp. C357-C367 ◽  
Author(s):  
H. F. Schoen ◽  
A. Kaufman ◽  
D. Erlij

We measured effects of oxytocin on current-voltage (I-V) relations of frog (Rana catesbeiana) skins impaled with an intracellular microelectrode. In both Cl- and Cl(-)-free (SO4(2-) solutions, oxytocin caused an approximate doubling short-circuit current (Isc) and a depolarization of the cell membrane. Increase in apical membrane slope conductance, chord conductance, and permeability after oxytocin correlated with the increase in amiloride-sensitive Isc. Oxytocin also increased basolateral membrane conductance (gb). In Cl-, the shift in the voltage intercept of the apical membrane I-V relation (Ea) implied increased intracellular Na+ activity (a(Na)c) after oxytocin. In isolated frog skin epithelia, a similar increase in intracellular [Na+] after oxytocin was demonstrated by flame photometry. In SO4(2-), changes caused by oxytocin in both Ea and in flame photometrically determined cell [Na+] were minimal. The voltage intercept of the basolateral membrane I-V relations (Eb) was shifted by oxytocin in both Cl- and SO4(2-) solutions. Assuming that the basolateral membrane is selectively permeable to K+, changes in K+ obtained from Eb were in disagreement with those obtained by flame photometry. These results suggest that 1) the increase in a(Na)c caused by oxytocin is not essential to produce either the increase in gb or Isc and 2) ions other than K+ make an important contribution to basolateral membrane conductance.


2007 ◽  
Vol 292 (6) ◽  
pp. G1683-G1694 ◽  
Author(s):  
A. James Moser ◽  
A. Gangopadhyay ◽  
N. A. Bradbury ◽  
K. W. Peters ◽  
R. A. Frizzell ◽  
...  

Pathological rates of gallbladder salt and water transport may promote the formation of cholesterol gallstones. Because prairie dogs are widely used as a model of this event, we characterized gallbladder ion transport in animals fed control chow by using electrophysiology, ion substitution, pharmacology, isotopic fluxes, impedance analysis, and molecular biology. In contrast to the electroneutral properties of rabbit and Necturus gallbladders, prairie dog gallbladders generated significant short-circuit current ( Isc; 171 ± 21 μA/cm2) and lumen-negative potential difference (−10.1 ± 1.2 mV) under basal conditions. Unidirectional radioisotopic fluxes demonstrated electroneutral NaCl absorption, whereas the residual net ion flux corresponded to Isc. In response to 2 μM forskolin, Isc exceeded 270 μA/cm2, and impedance estimates of the apical membrane resistance decreased from 200 Ω·cm2 to 13 Ω·cm2. The forskolin-induced Isc was dependent on extracellular HCO3− and was blocked by serosal 4,4′-dinitrostilben-2,2′-disulfonic acid (DNDS) and acetazolamide, whereas serosal bumetanide and Cl− ion substitution had little effect. Serosal trans-6-cyano-4-( N-ethylsulfonyl- N-methylamino)-3-hydroxy-2,2-dimethyl-chroman and Ba2+ reduced Isc, consistent with the inhibition of cAMP-dependent K+ channels. Immunoprecipitation and confocal microscopy localized cystic fibrosis transmembrane conductance regulator protein (CFTR) to the apical membrane and subapical vesicles. Consistent with serosal DNDS sensitivity, pancreatic sodium-bicarbonate cotransporter protein pNBC1 expression was localized to the basolateral membrane. We conclude that prairie dog gallbladders secrete bicarbonate through cAMP-dependent apical CFTR anion channels. Basolateral HCO3− entry is mediated by DNDS-sensitive pNBC1, and the driving force for apical anion secretion is provided by K+ channel activation.


1989 ◽  
Vol 256 (5) ◽  
pp. C1033-C1044 ◽  
Author(s):  
N. J. Willumsen ◽  
C. W. Davis ◽  
R. C. Boucher

Cl- transport was studied in human nasal epithelium, a predominantly Na+-absorbing proximal airway epithelium. Intracellular Cl- activity (aClc) and the electrical potentials across the apical (Va) and basolateral (Vb) membranes were measured with double-barreled, Cl- -selective microelectrodes to characterize the driving forces for Cl- flow across each membrane. Under control conditions (bilateral Krebs-bicarbonate Ringer), Va was -26.1 +/- 1.2 mV, Vb was -36.2 +/- 1.2 mV, and aCL(c) was 42.7 +/- 2.0 mM (n = 34), indicating that Cl- is near electrochemical equilibrium across the apical membrane but significantly above equilibrium across the basolateral membrane. Reduction of luminal [Cl-] from 120 to 3 mM reduced aClc from 42.7 +/- 4.0 to 27.0 +/- 3.5 mM, depolarized Va, and increased fractional apical membrane resistance (fRa) and transepithelial resistance (Rt). Serosal bumetanide reduced aClc by 10 mM without affecting electrical parameters. Reduction of serosal [Cl-] from 120 to 3 mM resulted in a rapid decrease in Vb, a decrease in fRa and an increase in Rt. Also, serosal [Cl-] reduction led to a slow decrease in aClc rom 45.5 +/- 2.5 to 31.1 +/- 4.2 mM) that could be inhibited by bumetanide. The data are consistent with the following conclusions: 1) Cl- is transported across the apical membrane through a conductive pathway; and 2) Cl- is translocated across the basolateral membrane by an electrically silent bumetanide-sensitive cotransport system and by a minor conductive path.


1991 ◽  
Vol 261 (2) ◽  
pp. C332-C341 ◽  
Author(s):  
N. J. Willumsen ◽  
R. C. Boucher

Cystic fibrosis (CF) airway epithelia exhibit raised transepithelial Na+ transport rates, as determined by open-circuit isotope fluxes and estimates of the amiloride-sensitive equivalent short-circuit current (Ieq). To study the contribution of apical and basolateral membrane paths to raised Na+ transport in CF, CF nasal epithelial cultures were studied with double-barreled Na(+)-selective microelectrodes and the Ussing chamber technique. Intracellular Na+ activity (acNa) was 24.1 +/- 1.5 mM (n = 36), a value similar to acNa of normal nasal epithelial cells. Reduction of luminal [Na+] to 3 mM abolished Ieq and reduced acNa. Amiloride (10(-4) M) abolished Ieq but increased acNa from 20 +/- 2 to 36 +/- 7 mM (n = 10). Amiloride-induced increase in acNa was not affected by serosal [Na+] reduction but was blocked by preexposure to reduced luminal [Na+]. Amphotericin B increased Ieq during amiloride exposure, indicating that amiloride did not inhibit NA(+)-K(+)-ATPase. Ouabain abolished Ieq and slowly raised acNa. Reduction of serosal [Na+] led to a decrease in acNa that was blocked by bumetanide. It is concluded that 1) CF airway epithelia exhibit an increased apical membrane Na+ permeability, 2) acNa is regulated to a normal level in CF cells despite increased transcellular Na+ fluxes, 3) the abnormal increase in acNa in response to amiloride is dependent on luminal Na+, 4) Na+ is transported across the basolateral membrane by a bumetanide-sensitive cotransport mechanism, and 5) ouabain inhibits the basolateral Na(+)-K(+)-ATPase, causing slow dissipation of the chemical and electrical gradients across the cell membranes.


1987 ◽  
Vol 252 (4) ◽  
pp. C411-C417 ◽  
Author(s):  
H. F. Schoen ◽  
D. Erlij

We measured the effects of insulin on the current-voltage (I-V) relations of frog skins impaled with an intracellular microelectrode. The current across the cell membranes was assumed to be equal to the amiloride-inhibitable current. Insulin increased short-circuit current (Isc) approximately 40% from the control value. The increase in Isc was associated with a depolarization of the cell membrane. In addition there was an increase in the value of the parameters that describe the ease of movement of Na+ across the apical membrane, namely, slope conductance (ga), chord conductance (Ga), and permeability (PNa). The values of these parameters show remarkable linear correlations with membrane current both before and after stimulation. Intracellular Na+ activity (acNa) was determined from the I-V relations of the apical membrane. Insulin did not significantly modify acNa. Insulin also increased the value of the basolateral membrane conductance, however, the relationship between this parameter and current was complex. These experiments show that the stimulatory effect of insulin on Isc is associated with an increase in the conductance of both the apical and basolateral membranes.


Sign in / Sign up

Export Citation Format

Share Document