Regulated endocytosis in a chloride secretory epithelial cell line

1992 ◽  
Vol 262 (3) ◽  
pp. C752-C759 ◽  
Author(s):  
N. A. Bradbury ◽  
T. Jilling ◽  
K. L. Kirk ◽  
R. J. Bridges

The colonic epithelial cell line T84 has been shown to be a good model to investigate the regulation of Cl- secretion by the adenosine 3',5'-cyclic monophosphate (cAMP)-mediated second messenger cascade. Regulated exocytic insertion and endocytic retrieval of transport proteins, or proteins that regulate transport proteins, is one mechanism proposed to regulate plasma membrane solute permeabilities. The aims of our studies were to characterize endocytic processes in T84 cells and to investigate their regulation by known activators of Cl- secretion that are mediated by the cAMP second messenger cascade. Forskolin, an activator of adenylate cyclase, caused a marked inhibition of endocytic uptake of the fluid-phase marker horseradish peroxidase (HRP) and the adsorptive marker wheat germ agglutinin conjugated to HRP. Similar inhibition was obtained with vasoactive intestinal peptide, a secretagogue whose receptor is coupled to adenylate cyclase, and 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, a membrane-permeable cAMP analogue. 1,9-Dideoxy-forskolin, a forskolin analogue that fails to activate adenylate cyclase, was without effect on endocytosis. Our data show that the net rate of endocytosis, as measured by fluid-phase uptake, is decreased by a cAMP-mediated mechanism. Because the number of Cl- channels or associated regulatory proteins in the plasma membrane reflects a balance between their exocytic insertion and endocytic retrieval, we propose that the cAMP-mediated decrease in endocytosis could contribute to the concomitant increase in plasma membrane Cl- permeability.


2015 ◽  
Vol 37 (1) ◽  
pp. 306-320 ◽  
Author(s):  
Yuan Hao ◽  
Cindy S.T. Cheung ◽  
Wallace C.Y. Yip ◽  
Wing-hung Ko

Background/Aims: Nobiletin, a citrus flavonoid isolated from tangerines, alters ion transport functions in intestinal epithelia, and has antagonistic effects on eosinophilic airway inflammation of asthmatic rats. The present study examined the effects of nobiletin on basal short-circuit current (ISC) in a human bronchial epithelial cell line (16HBE14o-), and characterized the signal transduction pathways that allowed nobiletin to regulate electrolyte transport. Methods: The ISC measurement technique was used for transepithelial electrical measurements. Intracellular calcium ([Ca2+]i) and cAMP were also quantified. Results: Nobiletin stimulated a concentration-dependent increase in ISC, which was due to Cl- secretion. The increase in ISC was inhibited by a cystic fibrosis transmembrane conductance regulator inhibitor (CFTRinh-172), but not by 4,4'-diisothiocyano-stilbene-2,2'-disulphonic acid (DIDS), Chromanol 293B, clotrimazole, or TRAM-34. Nobiletin-stimulated ISC was also sensitive to a protein kinase A (PKA) inhibitor, H89, and an adenylate cyclase inhibitor, MDL-12330A. Nobiletin could not stimulate any increase in ISC in a cystic fibrosis (CF) cell line, CFBE41o-, which lacked a functional CFTR. Nobiletin stimulated a real-time increase in cAMP, but not [Ca2+]i. Conclusion: Nobiletin stimulated transepithelial Cl- secretion across human bronchial epithelia. The mechanisms involved activation of adenylate cyclase- and cAMP/PKA-dependent pathways, leading to activation of apical CFTR Cl- channels.



1979 ◽  
Vol 81 (3) ◽  
pp. 635-648 ◽  
Author(s):  
M J Rindler ◽  
L M Chuman ◽  
L Shaffer ◽  
M H Saier

Madin-Darby canine kidney (MDCK) cells grown in tissue culture have the morphological properties of distal tubular epithelial cells, form tight junctions, and lack several proximal tubular enzyme markers. Adenylate cyclase in these cells was stimulated by vasopressin, oxytocin, prostaglandins E1 and E2, glucagon, and cholera toxin. Hormone-stimulated adenylate cyclase activity in isolated membrane preparations was dependent on low concentrations of GTP and had the MgCl2 and pH optima expected for the kidney enzyme. The results, as well as the demonstration of enhanced hemicyst formation induced by cyclic AMP, suggest that the MDCK cell line has retained the differentiated properties of the kidney epithelial cell of origin. When MDCK cells were injected into baby nude mice, continuous nodule growth was observed until adulthood was attained. Histological studies revealed the presence of two cell types: normal mouse fibroblasts which comprise 80--90% of the solid nodule mass, and MDCK cells, which formed epithelial sheets lining internal fluid-filled glands. Electron microscope analysis showed that the mucosal surfaces of the cells were characterized by microvilli which faced the lumen of the glands, that adjacent MDCK cells were joined by tight junctions, and that the serosal surfaces of the epithelial sheets were characterized by smooth plasma membranes which were lined by a continuous basement membrane. These observations lead to the conclusion that the MDCK cells retain regional differentiation of their plasma membranes and the ability to regenerate kidney tubule-like structures in vivo.



1984 ◽  
Vol 81 (2) ◽  
pp. 449-452 ◽  
Author(s):  
B. S. Packard ◽  
M. J. Saxton ◽  
M. J. Bissell ◽  
M. P. Klein




Sign in / Sign up

Export Citation Format

Share Document