High-affinity [3H]PN200-110 and [3H]ryanodine binding to rabbit and frog skeletal muscle

1994 ◽  
Vol 266 (2) ◽  
pp. C462-C466 ◽  
Author(s):  
K. Anderson ◽  
A. H. Cohn ◽  
G. Meissner

In vertebrate skeletal muscle, the voltage-dependent mechanism of sarcoplasmic reticulum (SR) Ca2+ release, commonly referred to as excitation-contraction (E-C) coupling, is mediated by the voltage-sensing dihydropyridine receptor (DHPR), which is believed to affect SR Ca2+ release through a physical interaction with the SR ryanodine receptor (RYR)/Ca2+ release channel. Scatchard analysis of ligand binding of [3H]PN200-110 to the DHPR and [3H]ryanodine to the RYR indicated the presence of high-affinity sites in muscle homogenates, with maximum binding (Bmax) values of 72 +/- 26 and 76 +/- 30 pmol/g wet wt for rabbit skeletal muscle, and 27 +/- 14 and 44 +/- 13 pmol/g wet wt for frog skeletal muscle, respectively. The Bmax values corresponded to a PN200-110-to-ryanodine binding ratio of 0.98 +/- 0.26 and 0.61 +/- 0.24 for rabbit and frog skeletal muscle, respectively, and were found by Student's t test to be significantly different (P < 0.02, n = 7). These results are compared with measurements with isolated rabbit skeletal muscle membrane fractions and discussed in relation to our current understanding of the mechanism of E-C coupling in skeletal muscle.

1995 ◽  
Vol 105 (3) ◽  
pp. 363-383 ◽  
Author(s):  
K Anderson ◽  
G Meissner

In vertebrate skeletal muscle, the voltage-dependent mechanism of rapid sarcoplasmic reticulum (SR) Ca2+ release, commonly referred to as excitation-contraction (EC) coupling, is believed to be mediated by physical interaction between the transverse (T)-tubule voltage-sensing dihydropyridine receptor (DHPR) and the SR ryanodine receptor (RyR)/Ca2+ release channel. In this study, differential T-tubule and SR membrane monovalent ion permeabilities were exploited with the use of an ion-replacement protocol to study T-tubule depolarization-induced SR 45Ca2+ release from rabbit skeletal muscle whole-cell homogenates. Specificity of Ca2+ release was ascertained with the use of the DHPR antagonists D888, nifedipine and PN200-110. In the presence of the "slow" complexing Ca2+ buffer EGTA, homogenates exhibited T-tubule depolarization-induced Ca2+ release comprised of an initial rapid phase followed by a slower release phase. During the rapid phase, approximately 20% of the total sequestered Ca2+ (approximately 30 nmol 45Ca2+/mg protein), corresponding to 100% of the caffeine-sensitive Ca2+ pool, was released within 50 ms. Rapid release could be inhibited fourfold by D888. Addition to release media of the "fast" complexing Ca2+ buffer BAPTA, at concentrations &gt; or = 4 mM, nearly abolished rapid Ca2+ release, suggesting that most was Ca2+ dependent. Addition of millimolar concentrations of either Ca2+ or Mg2+ also greatly reduced rapid Ca2+ release. These results show that T-tubule depolarization-induced SR Ca2+ release from rabbit skeletal muscle homogenates is controlled by T-tubule membrane potential- and by Ca(2+)-dependent mechanisms.


1993 ◽  
Vol 101 (2) ◽  
pp. 207-233 ◽  
Author(s):  
L Xu ◽  
R Jones ◽  
G Meissner

The effects of the two local anesthetics tetracaine and procaine and a quaternary amine derivative of lidocaine, QX314, on sarcoplasmic reticulum (SR) Ca2+ release have been examined by incorporating the purified rabbit skeletal muscle Ca2+ release channel complex into planar lipid bilayers. Recordings of potassium ion currents through single channels showed that Ca(2+)- and ATP-gated channel activity was reduced by the addition of the tertiary amines tetracaine and procaine to the cis (cytoplasmic side of SR membrane) or trans (SR lumenal) side of the bilayer. Channel open probability was lowered twofold at tetracaine and procaine concentrations of approximately 150 microM and 4 mM, respectively. Hill coefficients of 2.0 and greater indicated that the two drugs inhibited channel activity by binding to two or more cooperatively interacting sites. Unitary conductance of the K(+)-conducting channel was not changed by 1 mM tetracaine in the cis and trans chambers. In contrast, cis millimolar concentrations of the quaternary amine QX314 induced a fast blocking effect at positive holding potentials without an apparent change in channel open probability. A voltage-dependent block was observed at high concentrations (millimolar) of tetracaine, procaine, and QX314 in the presence of 2 microM ryanodine which induced the formation of a long open subconductance. Vesicle-45Ca2+ ion flux measurements also indicated an inhibition of the SR Ca2+ release channel by tetracaine and procaine. These results indicate that local anesthetics bind to two or more cooperatively interacting high-affinity regulatory sites of the Ca2+ release channel in or close to the SR membrane. Voltage-dependent blockade of the channel by QX314 in the absence of ryanodine, and by QX314, procaine and tetracaine in the presence of ryanodine, indicated one low-affinity site within the conduction pathway of the channel. Our results further suggest that tetracaine and procaine may primarily inhibit excitation-contraction coupling in skeletal muscle by binding to the high-affinity, regulatory sites of the SR Ca2+ release channel.


1974 ◽  
Vol 52 (6) ◽  
pp. 1126-1135 ◽  
Author(s):  
D. J. Parry ◽  
A. Kover ◽  
G. B. Frank

Exposure of frog toe muscles to 1 mM La3+ results in a decrease in amplitude and rate of tension development of potassium contractures and twitches. At this concentration La3+ also inhibits the uptake of calcium, both in the resting condition and during stimulation. Caffeine contractures are unaffected even after a 5-min pre-exposure to La3+. The depolarization induced by various concentrations of K+ is reduced by about 10 mV as is the amplitude of the action potential. The rate of rise of the action potential is reduced by about 40% after 1 min in La3+ Ringer. Neither the decreased amplitude nor the reduced rate of depolarization is considered to be sufficient to explain the inhibition of tension development. It is suggested that La3+ partially uncouples excitation from contraction by preventing the release of a trigger-Ca2+ fraction from some site on the muscle membrane. This fraction normally plays a role in excitation–contraction coupling, although some tension may still be developed in the absence of a trigger-Ca2+ influx.


1996 ◽  
Vol 271 (4) ◽  
pp. C1367-C1379 ◽  
Author(s):  
R. W. Putnam ◽  
P. B. Douglas ◽  
N. A. Ritucci

The distribution of pH-regulating transporters in surface and transverse (T) tubular membrane (TTM) domains of frog skeletal muscle was studied. 2',7'-Bis(carboxyethyl)-5(6)- carboxyfluorescein-loaded giant sarcolemmal vesicles, containing surface membrane, exhibited reversible Na+/H+ exchange. A microsomal vesicle fraction was shown to be enriched in TTM on the basis of high Na(+)-K(+)-ATPase and Mg(2+)-ATPase activity, high ouabain and nitrendipine binding, and low Ca(2+)-ATPase activity. TTM vesicles were well sealed and oriented inside out. Vesicles were loaded with the pH-sensitive dye pyranine. In response to an inwardly directed Na+ gradient, vesicles displayed virtually no alkalinization unless monensin was present. No pH response to an imposed Na+ gradient was seen regardless of the direction of the pH gradient across the vesicles, after phosphorylation of the vesicles with protein kinase C, or when exposed to guanosine 5'-O-(3-thiotriphosphate). In the presence of CO2, addition of Na+ or Cl- had no effect on vesicle pH. These data indicate that the TTM lacks functional pH-regulating transporters [Na+/H+ and (Na+ + HCO3-)/Cl- exchangers], suggesting that pH-regulating transporters are localized only to the surface membrane domain in frog muscle.


Sign in / Sign up

Export Citation Format

Share Document