Transport and interaction of nitrogen oxides and NO2 with CO2-HCO3- transporters in pancreatic acini

1994 ◽  
Vol 267 (2) ◽  
pp. C385-C393 ◽  
Author(s):  
H. Zhao ◽  
X. Xu ◽  
K. Ujiie ◽  
R. A. Star ◽  
S. Muallem

Recently, we showed that NO2- increases gap junction (GJ) permeability and synchronizes intracellular Ca2+ concentration oscillations in pancreatic acini (Loessburg et al., J. Biol. Chem. 268: 19769-19775, 1993). NO2- is also an end product of nitric oxide (NO) production and metabolism. Because of the effect of NO2- on GJ permeability and the possible importance of NO2- in NO metabolism and cytotoxicity, we used pancreatic acinar cells and intracellular pH (pHi) measurements to study the interaction of nitrogen oxides and NO2- with cellular proteins. Exposing cells to NO2- resulted in a concentration-dependent cytosolic acidification. The acidification did not require the transport of NO2- and was not mediated by diffusion of HNO2. Because the acidification was prevented by CO2-HCO3- and inhibition of carbonic anhydrase, it is possible that other nitrogen oxides present in a solution containing NO2- enter the cells by diffusion and interact with OH- or H2O to stably acidify the cytosol. NO2- itself is shown to be transported by the HCO3- transporters present in the plasma membrane. Thus manipulation of the cellular Cl- gradient and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) were used to show Cl-/NO2- exchange, whereas stimulation of external Na(+)-dependent amiloride-insensitive and DIDS-sensitive pHi increase in acidified cells was used to demonstrate a Na(+)-(NO2-)n cotransport. Hence NO2- can be a convenient substitute for HCO3- when studying HCO3- transport in an open system. The studies also show that cellular levels of nitrogen oxides and NO2- can be modulated by the cellular HCO3(-)-buffering system.(ABSTRACT TRUNCATED AT 250 WORDS)

2002 ◽  
Vol 282 (3) ◽  
pp. G450-G460 ◽  
Author(s):  
Michael Beil ◽  
Jürgen Leser ◽  
Manfred P. Lutz ◽  
Anna Gukovskaya ◽  
Thomas Seufferlein ◽  
...  

Pancreatic acinar cells depend on the integrity of the cytoskeleton for regulated secretion. Stimulation of isolated rat pancreatic acini with the secretagogue CCK serves as a model for human acute edematous pancreatitis. It induces the breakdown of the actin filament system (F-actin) with the consecutive inhibition of secretion and premature activation of digestive enzymes. However, the mechanisms that regulate F-actin breakdown are largely unknown. Plectin is a versatile cytolinker protein regulating F-actin dynamics in fibroblasts. It was recently demonstrated that plectin is a substrate of caspase 8. In pancreatic acinar cells, plectin strongly colocalizes with apical and basolateral F-actin. Supramaximal secretory stimulation of acini with CCK leads to a rapid redistribution and activation of caspase 8, followed by degradation of plectin that in turn precedes the F-actin breakdown. Inhibition of caspase 8 before CCK hyperstimulation prevents plectin cleavage, stabilizes F-actin morphology, and reverses the inhibition of secretion. Thus we propose that the caspase 8-mediated degradation of plectin represents a critical biochemical event during CCK-induced secretory blockade and cell injury.


1989 ◽  
Vol 263 (2) ◽  
pp. 333-339 ◽  
Author(s):  
S Muallem ◽  
T G Beeker

Electrically permeabilized rat pancreatic acini were used to evaluate the contributions of GTP and Ins(1,4,5) P3 to hormone-stimulated Ca2+ uptake and release from intracellular pools. Treatment of permeabilized acini with Ca2+-mobilizing hormones, GTP or GTP[S] resulted in stimulation of an ATP-dependent, VO4(2-)-sensitive Ca2+ uptake into a non-mitochondrial intracellular pool. GTP and GTP[S] also augmented the hormone-mediated stimulation of Ca2+ uptake. Including oxalate in the uptake medium increased Ca2+ uptake into this pool but did not modify the stimulation of Ca2+ uptake induced by hormones or GTP. Ins(1,4,5)P3 released all the extra Ca2+ accumulated as a result of hormone, GTP or GTP[S] stimulation. Hence, these stimuli activated the Ca2+ pump localized in the membrane of the hormone and Ins(1,4,5)P3-sensitive Ca2+ pool. Including 2,3-diphosphoglyceric acid (PGA) [an inhibitor of Ins(1,4,5)P3 hydrolysis] in the incubation medium blunted the GTP and GTP[S]-stimulated Ca2+ uptake. In the presence of PGA, the hormones inhibited Ca2+ accumulation, and GTP and GTP[S] augmented this effect. Accordingly, PGA stabilized the Ins(1,4,5)P3-evoked Ca2+ release from intracellular pools. Only in the presence of PGA was it possible to demonstrate hormonally-evoked Ca2+ release from permeabilized cells. GTP, and more importantly GTP[S], augmented the hormone-evoked Ca2+ release. Hormones and Ins(1,4,5)P3 in the presence or absence of GTP or GTP[S] released Ca2+ from the same intracellular pool. The extent of Ca2+ release caused by the combination of hormones and GTP or GTP[S] was similar to that evoked by Ins(1,4,5)P3 alone. Taken together, these results suggest that GTP or GTP[S] facilitates stimulation of phospholipase C by hormones. Such stimulation results in stimulation of protein kinase C and increased levels of Ins(1,4,5)P3 and is sufficient to explain the effects of GTP and GTP[S] on Ca2+ uptake and release from pancreatic acinar cells.


1985 ◽  
Vol 249 (3) ◽  
pp. G389-G398 ◽  
Author(s):  
D. L. Ochs ◽  
J. I. Korenbrot ◽  
J. A. Williams

Pancreatic acini were loaded with the Ca-selective fluorescent indicator quin-2 by incubation with its acetyoxymethyl ester. Loading acini with 844 +/- 133 microM quin-2 altered neither their ultrastructure nor their viability. The rate of amylase release from quin-2-loaded acini in response to the secretagogue carbachol, however, was significantly smaller than that of control acini. Studies in which acini were loaded with both quin-2 and a similar Ca-chelating compound, BAPTA, indicated that this reduced amylase release was related to the Ca buffering properties of quin-2. The concentration of free intracellular Ca calculated from the fluorescence of quin-2 was 90 +/- 18 nM. Stimulation by carbachol of acini suspended in media containing 1.25 mM Ca caused a rapid, transient enhancement of this value. After stimulation amylase release, the onset of the rise in free cytosolic Ca levels was observed in 1.1 +/- 0.1 s following the addition of agonist, and peak Ca levels (545 +/- 112 nM) were obtained within 5.3 +/- 0.3 s. For concentrations of carbachol less than or equal to 10(-6) M, a stoichiometric relation was found between stimulated amylase release and the peak concentration of free cytosolic Ca achieved. At higher concentrations of carbachol, however, the peak free cytosolic Ca remained constant while amylase release declined. The latency of the rise in intracellular Ca following stimulation of acini suspended in Ca-free media was not different from that observed for acini suspended in normal media, but the rise time was significantly prolonged. In the presence of extracellular Ca, the intracellular level of Ca remained elevated 2.8-fold above basal levels for at least 15 min following stimulation with 10(-6) M carbachol, whereas it had returned to near resting levels by 15 min when either 3 X 10(-7) or 3 X 10(-5) M carbachol was the stimulus. The Ca ionophore ionomycin (10–6 M) induced changes in the level of free cytosolic Ca similar to those caused by 10(-6) M carbachol. Ionomycin, however, stimulated only approximately one-third as much amylase release. These data suggest that factors in addition to changes in free cytosolic Ca may be important in regulating enzyme secretion by pancreatic acinar cells.


1994 ◽  
Vol 266 (3) ◽  
pp. G350-G356 ◽  
Author(s):  
A. Gukovskaya ◽  
S. Pandol

Guanosine 3',5'-cyclic monophosphate (cGMP) rise is one of the early events in neurotransmitter or hormone-induced cascade of reactions in pancreatic acinar cells. The mechanism of agonist-stimulated guanylyl cyclase activation in these cells remains, however, unknown. In the present work, mechanisms of cGMP rise, as well as of Ca2+ influx, induced by carbachol were studied on acinar cells isolated from rat and guinea pig pancreas. In both types of acinar cells, blocking nitric oxide (NO) production by inhibitors of NO synthase, NG-monomethyl-L-arginine (L-NMMA) or NG-nitro-L-arginine, abolished carbachol-induced cGMP rise in a dose-dependent manner. The inhibition was reversed by addition of excess L-arginine. L-NMMA also caused inhibition of the basal cGMP level, suggesting a role for NO in cGMP homeostasis in resting cells. Carbachol was found to increase [3H]arginine conversion to [3H]citrulline. This conversion was inhibited by L-NMMA. By contrast, inhibition of carbon monoxide production by Zn-protoporphyrin did not affect carbachol-stimulated cellular cGMP levels. There was no increase in cellular cGMP levels in response to exogenous arachidonic acid (AA). Blocking of lipoxygenase oxidation of AA by nordihydroguaiaretic acid did not produce any changes in carbachol-induced cGMP rise. Indomethacin, a cyclooxygenase inhibitor, increased basal cGMP level through L-NMMA-sensitive mechanism. Blockade of NO production inhibited carbachol-induced increase in 45Ca2+ uptake in both guinea pig and rat acinar cells. The concentration-response curves for inhibition by L-NMMA of 45Ca2+ uptake and cGMP formation were superimposable. L-NMMA also suppressed stimulation of Mn2+ quenching by carbachol in fura 2-loaded acini.(ABSTRACT TRUNCATED AT 250 WORDS)


2014 ◽  
Vol 307 (11) ◽  
pp. C1039-C1049 ◽  
Author(s):  
Amira Moustafa ◽  
Yoshiaki Habara

Carbon monoxide (CO) is known as an essential gaseous messenger that regulates a wide array of physiological and pathological processes, similar to nitric oxide (NO) and hydrogen sulfide. The aim of the present study was to elucidate the potential role of CO in Ca2+homeostasis and to explore the underlying mechanisms in pancreatic acinar cells. The exogenous application of a CO-releasing molecule dose-dependently increased intracellular Ca2+concentration ([Ca2+]i). A heme oxygenase (HO) inducer increased [Ca2+]iin a concentration-dependent manner, and the increase was diminished by an HO inhibitor. The CO-induced [Ca2+]iincrease persisted in the absence of extracellular Ca2+, indicating that Ca2+release is the initial source for the increase. The inhibition of G protein, phospholipase C (PLC), and inositol 1,4,5-trisphosphate (IP3) receptor diminished the CO-induced [Ca2+]iincrease. CO upregulated endothelial nitric oxide synthase (eNOS) expression and stimulated NO production, and NOS inhibitor, calmodulin inhibitor, or the absence of extracellular Ca2+eliminated the latter response. Blocking the phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) pathway abolished CO-induced NO production. Pretreatment with an NOS inhibitor, NO scavenger, or soluble guanylate cyclase inhibitor, did not affect the CO-induced [Ca2+]iincrease, indicating that NO, soluble guanylate cyclase, and cyclic guanosine 5′-monophosphate are not involved in the CO-induced [Ca2+]iincrease. CO inhibited the secretory responses to CCK-octapeptide or carbachol. We conclude that CO acts as a regulator not only for [Ca2+]ihomeostasis via a PLC-IP3-IP3receptor cascade but also for NO production via the calmodulin and PI3K-Akt/PKB pathway, and both CO and NO interact. Moreover, CO may provide potential therapy to ameliorate acute pancreatitis by inhibiting amylase secretion.


2001 ◽  
Vol 280 (3) ◽  
pp. C465-C472 ◽  
Author(s):  
Bing Han ◽  
Baoan Ji ◽  
Craig D. Logsdon

In the cholecystokinin (CCK) hyperstimulation model of acute pancreatitis, two early intracellular events, activation of trypsinogen and activation of nuclear factor-κB (NF-κB), are thought to be important in the development of the disease. In this study, the relationship between these two events was investigated. NF-κB activity was monitored by using a DNA binding assay and mob-1 chemokine gene expression. Intracellular trypsin activity was measured by using a fluorogenic substrate. Protease inhibitors including FUT-175, Pefabloc, and E-64d prevented CCK stimulation of intracellular trypsinogen and NF-κB activation. Likewise, the NF-κB inhibitors pyrrolidine dithiocarbamate and N-acetyl-l-cysteine inhibited CCK stimulation of NF-κB and intracellular trypsinogen activation. These results suggested a possible codependency of these two events. However, CCK stimulated NF-κB activation in Chinese hamster ovary-CCKAcells, which do not express trypsinogen, indicating that trypsin is not necessary for CCK activation of NF-κB. Furthermore, adenovirus-mediated expression in acinar cells of active p65 subunits to stimulate NF-κB, or of inhibitory κB-α molecules to inhibit NF-κB, did not affect either basal or CCK-mediated trypsinogen activation. Thus trypsinogen and NF-κB activation are independent events stimulated by CCK.


2006 ◽  
Vol 291 (3) ◽  
pp. G432-G438 ◽  
Author(s):  
Akihiko Satoh ◽  
Anna S. Gukovskaya ◽  
Joseph R. Reeve ◽  
Tooru Shimosegawa ◽  
Stephen J. Pandol

Although ethanol abuse is the most common cause of pancreatitis, the mechanism of alcohol's effect on the pancreas is not well understood. Previously, we demonstrated that in vitro ethanol treatment of pancreatic acinar cells augmented the CCK-8-induced activation of NF-κB, a key signaling system involved in the inflammatory response of pancreatitis. In the present study, we determine the role for individual PKC isoforms in the sensitizing effect of ethanol on NF-κB activation. Dispersed rat pancreatic acini were treated with and without ethanol and then stimulated with CCK-8; 100 nM CCK-8 caused both NF-κB and PKC-δ, -ε, and -ζ activation, whereas 0.1 nM CCK-8 did not increase PKC-ε, PKC-ζ, or NF-κB activity. CCK-8 (0.1 nM) did activate PKC-δ. PKC-ε activator alone did not cause NF-κB activation; however, together with 0.1 nM CCK-8, it caused NF-κB activation. Ethanol activated PKC-ε without affecting other PKC isoforms or NF-κB activity. Of note, stimulation of acini with ethanol and 0.1 nM CCK-8 resulted in the activation of PKC-δ, PKC-ε, and NF-κB. The NF-κB activation to 0.1 nM CCK-8 in ethanol-pretreated acini was inhibited by both PKC-δ inhibitor and PKC-ε inhibitor. Taken together, these results demonstrate the different modes of activation of PKC isoforms and NF-κB in acini stimulated with ethanol, high-dose CCK-8, and low-dose CCK-8, and furthermore suggest that activation of both PKC-ε and -δ is required for NF-κB activation. These results suggest that ethanol enhances the CCK-8-induced NF-κB activation at least in part through its effects on PKC-ε.


1998 ◽  
Vol 275 (3) ◽  
pp. C810-C817 ◽  
Author(s):  
Antonio González ◽  
Fatima Pfeiffer ◽  
Andreas Schmid ◽  
Irene Schulz

We have used fluo 3-loaded mouse pancreatic acinar cells to investigate the relationship between Ca2+ mobilization and intracellular pH (pHi). The Ca2+-mobilizing agonist ACh (500 nM) induced a Ca2+ release in the luminal cell pole followed by spreading of the Ca2+ signal toward the basolateral side with a mean speed of 16.1 ± 0.3 μm/s. In the presence of an acidic pHi, achieved by blockade of the Na+/H+exchanger or by incubation of the cells in a Na+-free buffer, a slower spreading of ACh-evoked Ca2+ waves was observed (7.2 ± 0.6 μm/s and 7.5 ± 0.3 μm/s, respectively). The effects of cytosolic acidification on the propagation rate of ACh-evoked Ca2+ waves were largely reversible and were not dependent on the presence of extracellular Ca2+. A reduction in the spreading speed of Ca2+ waves could also be observed by inhibition of the vacuolar H+-ATPase with bafilomycin A1 (11.1 ± 0.6 μm/s), which did not lead to cytosolic acidification. In contrast, inhibition of the endoplasmic reticulum Ca2+-ATPase by 2,5-di- tert-butylhydroquinone led to faster spreading of the ACh-evoked Ca2+ signals (25.6 ± 1.8 μm/s), which was also reduced by cytosolic acidification or treatment of the cells with bafilomycin A1. Cytosolic alkalinization had no effect on the spreading speed of the Ca2+ signals. The data suggest that the propagation rate of ACh-induced Ca2+ waves is decreased by inhibition of Ca2+ release from intracellular stores due to cytosolic acidification or to Ca2+ pool alkalinization and/or to a decrease in the proton gradient directed from the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool to the cytosol.


2006 ◽  
Vol 291 (1) ◽  
pp. G95-G101 ◽  
Author(s):  
Yang Cao ◽  
Sharmila Adhikari ◽  
Abel Damien Ang ◽  
Marie Véronique Clément ◽  
Matthew Wallig ◽  
...  

We investigated the apoptotic pathway activated by crambene (1-cyano-2-hydroxy-3-butene), a plant nitrile, on pancreatic acinar cells. As evidenced by annexin V-FITC staining, crambene treatment for 3 h induced the apoptosis but not necrosis of pancreatic acini. Caspase-3, -8, and -9 activities in acini treated with crambene were significantly higher than in untreated acini. Treatment with caspase-3, -8, and -9 inhibitors inhibited annexin V staining, as well as caspase-3 activity, pointing to an important role of these caspases in crambene-induced acinar cell apoptosis. The mitochondrial membrane potential was collapsed, and cytochrome c was released from the mitochondria in crambene-treated acini. Neither TNF-α nor Fas ligand levels were changed in pancreatic acinar cells after crambene treatment. These results provide evidence for the induction of pancreatic acinar cell apoptosis in vitro by crambene and suggest the involvement of mitochondrial pathway in pancreatic acinar cell apoptosis.


Sign in / Sign up

Export Citation Format

Share Document