cytosolic acidification
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 9)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Vol 7 (12) ◽  
pp. 1010
Author(s):  
Marcel Albacar ◽  
Lenka Sacka ◽  
Carlos Calafí ◽  
Diego Velázquez ◽  
Antonio Casamayor ◽  
...  

The alteration of the fine-tuned balance of phospho/dephosphorylation reactions in the cell often results in functional disturbance. In the yeast Saccharomyces cerevisiae, the overexpression of Ser/Thr phosphatase Ppz1 drastically blocks cell proliferation, with a profound change in the transcriptomic and phosphoproteomic profiles. While the deleterious effect on growth likely derives from the alteration of multiple targets, the precise mechanisms are still obscure. Ppz1 is a negative effector of potassium influx. However, we show that the toxic effect of Ppz1 overexpression is unrelated to the Trk1/2 high-affinity potassium importers. Cells overexpressing Ppz1 exhibit decreased K+ content, increased cytosolic acidification, and fail to properly acidify the medium. These effects, as well as the growth defect, are counteracted by the deletion of NHA1 gene, which encodes a plasma membrane Na+, K+/H+ antiporter. The beneficial effect of a lack of Nha1 on the growth vanishes as the pH of the medium approaches neutrality, is not eliminated by the expression of two non-functional Nha1 variants (D145N or D177N), and is exacerbated by a hyperactive Nha1 version (S481A). All our results show that high levels of Ppz1 overactivate Nha1, leading to an excessive entry of H+ and efflux of K+, which is detrimental for growth.


2020 ◽  
Vol 21 (19) ◽  
pp. 7164
Author(s):  
Marianna Dionisi ◽  
Federico Alessandro Ruffinatti ◽  
Beatrice Riva ◽  
Dmitry Lim ◽  
Annalisa Canta ◽  
...  

Oxaliplatin-induced peripheral neuropathy is characterized by an acute hyperexcitability syndrome triggered/exacerbated by cold. The mechanisms underlying oxaliplatin-induced peripheral neuropathy are unclear, but the alteration of ion channel expression and activity plays a well-recognized central role. Recently, we found that oxaliplatin leads to cytosolic acidification in dorsal root ganglion (DRG) neurons. Here, we investigated the early impact of oxaliplatin on the proton-sensitive TREK potassium channels. Following a 6-h oxaliplatin treatment, both channels underwent a transcription upregulation that returned to control levels after 42 h. The overexpression of TREK channels was also observed after in vivo treatment in DRG cells from mice exposed to acute treatment with oxaliplatin. Moreover, both intracellular pH and TREK channel transcription were similarly regulated after incubation with amiloride, an inhibitor of the Na+/H+ exchanger. In addition, we studied the role of oxaliplatin-induced acidification on channel behavior, and, as expected, we observed a robust positive modulation of TREK channel activity. Finally, we focused on the impact of this complex modulation on capsaicin-evoked neuronal activity finding a transient decrease in the average firing rate following 6 h of oxaliplatin treatment. In conclusion, the early activation of TREK genes may represent a mechanism of protection against the oxaliplatin-related perturbation of neuronal excitability.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1216 ◽  
Author(s):  
Vladislav V. Yemelyanov ◽  
Tamara V. Chirkova ◽  
Maria F. Shishova ◽  
Sylvia M. Lindberg

Both ion fluxes and changes of cytosolic pH take an active part in the signal transduction of different environmental stimuli. Here we studied the anoxia-induced alteration of cytosolic K+ concentration, [K+]cyt, and cytosolic pH, pHcyt, in rice and wheat, plants with different tolerances to hypoxia. The [K+]cyt and pHcyt were measured by fluorescence microscopy in single leaf mesophyll protoplasts loaded with the fluorescent potassium-binding dye PBFI-AM and the pH-sensitive probe BCECF-AM, respectively. Anoxic treatment caused an efflux of K+ from protoplasts of both plants after a lag-period of 300–450 s. The [K+]cyt decrease was blocked by tetraethylammonium (1 mM, 30 min pre-treatment) suggesting the involvement of plasma membrane voltage-gated K+ channels. The protoplasts of rice (a hypoxia-tolerant plant) reacted upon anoxia with a higher amplitude of the [K+]cyt drop. There was a simultaneous anoxia-dependent cytosolic acidification of protoplasts of both plants. The decrease of pHcyt was slower in wheat (a hypoxia-sensitive plant) while in rice protoplasts it was rapid and partially reversible. Ion fluxes between the roots of intact seedlings and nutrient solutions were monitored by ion-selective electrodes and revealed significant anoxia-induced acidification and potassium leakage that were inhibited by tetraethylammonium. The K+ efflux from rice was more distinct and reversible upon reoxygenation when compared with wheat seedlings.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Catherine G Triandafillou ◽  
Christopher D Katanski ◽  
Aaron R Dinner ◽  
D Allan Drummond

Heat shock induces a conserved transcriptional program regulated by heat shock factor 1 (Hsf1) in eukaryotic cells. Activation of this heat shock response is triggered by heat-induced misfolding of newly synthesized polypeptides, and so has been thought to depend on ongoing protein synthesis. Here, using the budding yeast Saccharomyces cerevisiae, we report the discovery that Hsf1 can be robustly activated when protein synthesis is inhibited, so long as cells undergo cytosolic acidification. Heat shock has long been known to cause transient intracellular acidification which, for reasons which have remained unclear, is associated with increased stress resistance in eukaryotes. We demonstrate that acidification is required for heat shock response induction in translationally inhibited cells, and specifically affects Hsf1 activation. Physiological heat-triggered acidification also increases population fitness and promotes cell cycle reentry following heat shock. Our results uncover a previously unknown adaptive dimension of the well-studied eukaryotic heat shock response.


2020 ◽  
Vol 117 (26) ◽  
pp. 15343-15353 ◽  
Author(s):  
Elsa Demes ◽  
Laetitia Besse ◽  
Paloma Cubero-Font ◽  
Béatrice Satiat-Jeunemaitre ◽  
Sébastien Thomine ◽  
...  

Ion transporters are key players of cellular processes. The mechanistic properties of ion transporters have been well elucidated by biophysical methods. Meanwhile, the understanding of their exact functions in cellular homeostasis is limited by the difficulty of monitoring their activity in vivo. The development of biosensors to track subtle changes in intracellular parameters provides invaluable tools to tackle this challenging issue. AtCLCa (Arabidopsis thalianaChloride Channel a) is a vacuolar NO3−/H+exchanger regulating stomata aperture inA.thaliana. Here, we used a genetically encoded biosensor, ClopHensor, reporting the dynamics of cytosolic anion concentration and pH to monitor the activity of AtCLCa in vivo inArabidopsisguard cells. We first found that ClopHensor is not only a Cl−but also, an NO3−sensor. We were then able to quantify the variations of NO3−and pH in the cytosol. Our data showed that AtCLCa activity modifies cytosolic pH and NO3−. In an AtCLCa loss of function mutant, the cytosolic acidification triggered by extracellular NO3−and the recovery of pH upon treatment with fusicoccin (a fungal toxin that activates the plasma membrane proton pump) are impaired, demonstrating that the transport activity of this vacuolar exchanger has a profound impact on cytosolic homeostasis. This opens a perspective on the function of intracellular transporters of the Chloride Channel (CLC) family in eukaryotes: not only controlling the intraorganelle lumen but also, actively modifying cytosolic conditions.


Nova Hedwigia ◽  
2020 ◽  
Vol 110 (3) ◽  
pp. 247-267
Author(s):  
Trashi Singh ◽  
Pushpendra Kumar Dwivedi ◽  
Suvendra Nath Bagchi

An axenic culture of a cyanobacterium in the spent medium produced hexane-extracta- ble compound(s) that antagonized growth of several Gram+ve and –ve bacteria, including a few potential pathogens. Phylogenetic investigations classified the strain to be Anabaena fertilissima strain CCC597. Using Escherichia coli MTCC443 as a test organism, we have shown that ROS (O 2; H 2O 2) production and outer and inner membrane (OM: IM) permeabilization were induced upon such treatments. Consequently, leakage of proteins and cytosolic acidification processes were initi- ated. Suppression of cytoplasmic membrane-bound respiratory O 2consumption was most likely the physiological aberration that killed the bacteria. Several antioxidant enzymes viz. superoxide dis- mutase, catalase, and peroxidases showed concomitant increase in the enzymatic activities and band intensities in the corresponding substrate gels. Notwithstanding, the counteraction mechanism(s) was not preventive, and sufficient oxidative radicals still generated to manifest lipid peroxidation. Chemical analysis of the hexane-extract of A. fertilissima culture filtrates revealed presence of a number of long chain unsaturated fatty acids, including cis-13,16-docosadienoic acid, with proven antibacterial properties.


2020 ◽  
Vol 21 (2) ◽  
pp. 663 ◽  
Author(s):  
Farzana Sabir ◽  
Sara Gomes ◽  
Maria C. Loureiro-Dias ◽  
Graça Soveral ◽  
Catarina Prista

Plant Nodulin 26-like Intrinsic Proteins (NIPs) are multifunctional membrane channels of the Major Intrinsic Protein (MIP) family. Unlike other homologs, they have low intrinsic water permeability. NIPs possess diverse substrate selectivity, ranging from water to glycerol and to other small solutes, depending on the group-specific amino acid composition at aromatic/Arg (ar/R) constriction. We cloned three NIPs (NIP1;1, NIP5;1, and NIP6;1) from grapevine (cv. Touriga Nacional). Their expression in the membrane of aqy-null Saccharomyces cerevisiae enabled their functional characterization for water and glycerol transport through stopped-flow spectroscopy. VvTnNIP1;1 demonstrated high water as well as glycerol permeability, whereas VvTnNIP6;1 was impermeable to water but presented high glycerol permeability. Their transport activities were declined by cytosolic acidification, implying that internal-pH can regulate NIPs gating. Furthermore, an extension of C-terminal in VvTnNIP6;1M homolog, led to improved channel activity, suggesting that NIPs gating is putatively regulated by C-terminal. Yeast growth assays in the presence of diverse substrates suggest that the transmembrane flux of metalloids (As, B, and Se) and the heavy metal (Cd) are facilitated through grapevine NIPs. This is the first molecular and functional characterization of grapevine NIPs, providing crucial insights into understanding their role for uptake and translocation of small solutes, and extrusion of toxic compounds in grapevine.


2019 ◽  
Vol 20 (23) ◽  
pp. 5838 ◽  
Author(s):  
Andrés ◽  
Acosta-Zaldívar ◽  
González-Seisdedos ◽  
Fierro

In yeast, we reported the critical role of K+-efflux for the progress of the regulated cell death (RCD) induced by human lactoferrin (hLf), an antimicrobial protein of the innate immune system that blocks Pma1p H+-ATPase. In the present study, the K+ channel Tok1p was identified as the K+ channel-mediating K+-efflux, as indicated by the protective effect of extracellular K+ (30 mM), K+-channel blockers, and the greater hLf-resistance of TOK1-disrupted strains. K+-depletion was necessary but not sufficient to induce RCD as inferred from the effects of valinomycin, NH4Cl or nigericin which released a percentage of K+ similar to that released by lactoferrin without affecting cell viability. Cytosolic pH of hLf-treated cells decreased transiently (0.3 pH units) and its inhibition prevented the RCD process, indicating that cytosolic acidification was a necessary and sufficient triggering signal. The blocking effect of lactoferrin on Pma1p H+-ATPase caused a transitory decrease of cytosolic pH, and the subsequent membrane depolarization activated the voltage-gated K+ channel, Tok1p, allowing an electrogenic K+-efflux. These ionic events, cytosolic accumulation of H+ followed by K+-efflux, constituted the initiating signals of this mitochondria-mediated cell death. These findings suggest, for the first time, the existence of an ionic signaling pathway in RCD.


2018 ◽  
Author(s):  
Catherine G. Triandafillou ◽  
Christopher D. Katanski ◽  
Aaron R. Dinner ◽  
D. Allan Drummond

AbstractHeat shock induces a conserved transcriptional program regulated by heat shock factor 1 (Hsf1) in eukaryotic cells. Activation of this heat-shock response is triggered by heat-induced misfolding of newly synthesized polypeptides, and so has been thought to depend on ongoing protein synthesis. Here, using the the budding yeastSaccharomyces cerevisiae, we report the discovery that Hsf1 can be robustly activated when protein synthesis is inhibited, so long as cells undergo cytosolic acidification. Heat shock has long been known to cause transient intracellular acidification which, for reasons which have remained unclear, is associated with increased stress resistance in eukaryotes. We demonstrate that acidification is required for heat shock response induction in translationally inhibited cells, and specifically affects Hsf1 activation. Physiological heat-triggered acidification also increases population fitness and promotes cell cycle reentry following heat shock. Our results uncover a previously unknown adaptive dimension of the well-studied eukaryotic heat shock response.


Sign in / Sign up

Export Citation Format

Share Document