Connexin 32/38 chimeras suggest a role for the second half of inner loop in gap junction gating by low pH

1996 ◽  
Vol 271 (5) ◽  
pp. C1743-C1749 ◽  
Author(s):  
X. G. Wang ◽  
C. Peracchia

Gap junction channels are regulated by gates that close with cytosolic acidification and transjunctional voltage (Vj). For identifying the connexin (Cx) domain(s) involved in channel gating, CO2 and Vj sensitivities of channels made of Cx38, Cx32, Cx32/Cx38 chimeras, and Cx32 mutants were studied in Xenopus oocyte pairs. Recently, we have reported that Cx38 is more sensitive to CO2 and Vj than Cx32 because of differences in the Cx inner loop. To identify the responsible inner loop domain, chimeras of Cx32/Cx38 in which the first (I1) or the second (I2) half of the inner loop of Cx38 replaced that of Cx32 and I2 mutants of Cx32 were tested. The chimera Cx32/Cx38I2 (Cx32 with I2 of Cx38) was like Cx38 in CO2 sensitivity but like Cx32 in Vj sensitivity. Cx32/Cx38I1 (Cx32 with I1 of Cx38) did not express channels. Of the three Cx32 mutants, Cx32-VH/IR VH of Cx32 replaced with IR of Cx38) and Cx32-WW/MC WW of Cx32 replaced with MC of Cx38) were like Cx32 in both CO2 and Vj sensitivity, whereas Cx32-S*T/Q*P (S*T of Cx32 replaced with Q*P of Cx38) was closer to Cx38 in CO2 sensitivity but behaved like Cx32 in Vj gating. The data suggest that I1 and I2 contain domains relevant for Vj and CO2 gating, respectively.

1999 ◽  
Vol 19 (10) ◽  
pp. 3752-3760 ◽  
Author(s):  
Carmen Castro ◽  
Juan M. Gómez-Hernandez ◽  
Kaisa Silander ◽  
Luis C. Barrio

1994 ◽  
Vol 72 (5) ◽  
pp. 2257-2268 ◽  
Author(s):  
D. G. McMahon ◽  
D. R. Brown

1. Transmission at electrical synapses is modulated by a variety of physiological signals, and this modulation is a potentially general mechanism for regulating signal integration in neural circuits and networks. In the outer plexiform layer of the retina, modulation of horizontal-cell electrical coupling by dopamine alters the extent of spatial integration in the horizontal-cell network. By analyzing the activity of individual gap-junction channels in low-conductance electrical synapses of zebrafish retinal horizontal cells, we have defined the properties of these synaptic ion channels and characterized the functional changes in them during modulation of horizontal-cell electrical synapses. 2. Zebrafish horizontal-cell gap-junction channels have a unitary conductance of 50–60 pS and exhibit open times of several tens of milliseconds. The kinetic process of channel closure is best described by the sum of two rate constants. 3. Dopamine, and its agonist, (+/-)-6,7-dihydroxy-2-amino-tetralin (ADTN), modulates electrical synaptic transmission between horizontal cells predominantly by affecting channel-gating kinetics. These agents reduced the open probability of gap-junction channels two- to threefold by reducing both the duration and frequency of channel openings. Both time constants for channel open duration were reduced, whereas the duration of shut periods was increased. Similar changes in open-time kinetics were observed in power spectra of higher conductance gap junctions. 4. These results provide a description of rapid electrical synaptic modulation at the single channel level. The description should be useful in understanding the mechanisms of plasticity at these synapses throughout the vertebrate central nervous system.


Sign in / Sign up

Export Citation Format

Share Document