Differential activation of NF-kappa B in human aortic endothelial cells conditioned to specific flow environments

1997 ◽  
Vol 273 (2) ◽  
pp. C572-C578 ◽  
Author(s):  
S. Mohan ◽  
N. Mohan ◽  
E. A. Sprague

Endothelial cell-monocyte interaction plays an important role in atherogenesis. The expressions of some endothelial cell adhesion molecules involved in endothelial cell-monocyte interactions are regulated by transcription factor NF-kappa B. Because low shear stress has been known to influence endothelial monocyte adhesion, the differential activation of NF-kappa B under different flow regimens across time (0.5-24 h) was investigated. Nuclear proteins from flow-conditioned human aortic endothelial cells (HAEC) were analyzed by electrophoretic mobility shift assay using [gamma-32P]dATP-labeled NF-kappa B-specific oligonucleotide. Our results demonstrated that NF-kappa B activation was significantly elevated in HAEC exposed to prolonged (> 2 h) steady low shear (2 dyn/cm2) and pulsatile low shear (2 +/- 2 dyn/cm2) compared with HAEC exposed to high shear (16 dyn/cm2). In contrast, at 30 min, high shear-exposed HAEC exhibited an early, transient increase in NF-kappa B activity, relative to low shear-exposed cells, which reversed on continued exposure to high shear. Maximum activity in both low shear- and pulsatile low shear-conditioned HAEC was observed at 16 h compared with HAEC exposed to prolonged high shear. These results indicate that exposure of HAEC to prolonged low shear conditions is associated with significantly increased and prolonged NF-kappa B activity. This observation might provide a mechanism to explain the increased monocyte adhesion in atherosclerosisprone arterial sites exposed to chronic low-shear flow patterns.

2010 ◽  
Vol 298 (1) ◽  
pp. C66-C74 ◽  
Author(s):  
Nica M. Borradaile ◽  
J. Geoffrey Pickering

Polyploid endothelial cells are found in aged and atherosclerotic arteries. However, whether increased chromosome content has an impact on endothelial cell function is unknown. We show here that human aortic endothelial cells become tetraploid as they approach replicative senescence. Furthermore, accumulation of tetraploid endothelial cells was accelerated during growth in high glucose. Interestingly, induction of polyploidy was completely prevented by modest overexpression of the NAD+ regenerating enzyme, nicotinamide phosphoribosyltransferase (Nampt). To determine the impact of polyploidy on endothelial cell function, independent of replicative senescence, we induced tetraploidy using the spindle poison, nocodazole. Global gene expression analyses of tetraploid endothelial cells revealed a dysfunctional phenotype characterized by a cell cycle arrest profile (decreased CCNE2/A2, RBL1, BUB1B; increased CDKN1A) and increased expression of genes involved in inflammation ( IL32, TNFRSF21/10C, PTGS1) and extracellular matrix remodeling ( COL5A1, FN1, MMP10/14). The protection from polyploidy conferred by Nampt was not associated with enhanced poly(ADP-ribose) polymerase-1 or sirtuin (SIRT) 2 activity, but with increased SIRT1 activity, which reduced cellular reactive oxygen species and the associated oxidative stress stimulus for the induction of polyploidy. We conclude that human aortic endothelial cells are prone to chromosome duplication that, in and of itself, can induce characteristics of endothelial dysfunction. Moreover, the emergence of polyploid endothelial cells during replicative aging and glucose overload can be prevented by optimizing the Nampt-SIRT1 axis.


2015 ◽  
Vol 3 (40) ◽  
pp. 7912-7919 ◽  
Author(s):  
Dany J. Munoz-Pinto ◽  
Viviana R. Guiza-Arguello ◽  
Silvia M. Becerra-Bayona ◽  
Josh Erndt-Marino ◽  
Satyavrata Samavedi ◽  
...  

This work evaluates the response of human aortic endothelial cells (HAECs) to thromboresistant collagen-mimetic hydrogel coatings.


2011 ◽  
Vol 301 (6) ◽  
pp. E1143-E1154 ◽  
Author(s):  
Francesco Addabbo ◽  
Carmela Nacci ◽  
Leonarda De Benedictis ◽  
Valentina Leo ◽  
Mariela Tarquinio ◽  
...  

Adiponectin (Ad) is an insulin-sensitizing adipocytokine with anti-inflammatory and vasoprotective properties. Cleavage of native full-length Ad (fAd) by elastases from activated monocytes generates globular Ad (gAd). Increased gAd levels are observed in the proximity of atherosclerotic lesions, but the physiological meaning of this proteolytic Ad fragment in the cardiovascular system is controversial. We compared molecular and biological properties of fAd and gAd in human aortic endothelial cells (HAEC). In control HAEC, both fAd and gAd acutely stimulated nitric oxide (NO) production by AMPK-dependent pathways. With respect to fAd, gAd more efficiently increased activation of NF-κB signaling pathways, resulting in cyclooxygenase-2 (COX-2) overexpression and COX-2-dependent prostacyclin 2 (PGI2) release. In contrast with fAd, gAd also increased p38 MAPK phosphorylation and VCAM-1 expression, ultimately enhancing adhesion of monocytes to endothelial cells. In HAEC lacking AdipoR1 (by siRNA), both activation of NF-κB as well as COX-2 overexpression by gAd were abrogated. Conversely, gAd-mediated p38MAPK activation and VCAM-1 expression were unaffected, and monocyte adhesion was greatly enhanced. In HAEC lacking COX-2 (by siRNA), reduced levels of PGI2 further increased gAd-dependent monocyte adhesion. Our findings suggest that biological activities of fAd and gAd in endothelium do not completely overlap, with gAd possessing both AdipoR1-dependent ability to stimulate COX-2 expression and AdipoR1-independent effects related to expression of VCAM-1 and adhesion of monocytes to endothelium.


Sign in / Sign up

Export Citation Format

Share Document