camp signaling pathway
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 35)

H-INDEX

32
(FIVE YEARS 2)

Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3326
Author(s):  
Xiaobo Li ◽  
Zhanfa Liu ◽  
Shaohui Ye ◽  
Yue Liu ◽  
Qian Chen ◽  
...  

Chinese Zhongwei goat is a rare and precious fur breed as its lamb fur is a well-known fur product. Wool bending of lamb fur of the Zhongwei goat is its most striking feature. However, the curvature of the wool decreases gradually with growth, which significantly affects its quality and economic value. The mechanism regulating the phenotypic changes of hair bending is still unclear. In the present study, the skin tissues of Zhongwei goats at 45 days (curving wool) and 108 days (slight-curving wool) after birth were taken as the research objects, and the expression profiling of long non-coding RNAs (lncRNAs) and mRNAs were analyzed based on the Ribo Zero RNA sequencing (RNA-seq) method. In total, 46,013 mRNAs and 13,549 lncRNAs were identified, of which 352 were differentially expressed mRNAs and 60 were. lncRNAs. Functional enrichment analysis of the target genes of lncRNAs were mainly enriched in PI3K-Akt, Arachidonic acid metabolic, cAMP, Wnt, and other signaling pathways. The qRT-PCR results of eight selected lncRNAs and target genes were consistent with the sequencing result, which indicated our data were reliable. Through the analysis of the weighted gene co-expression network, 13 co-expression modules were identified. The turquoise module contained a large number of differential expressed lncRNAs, which were mainly enriched in the PI3K-Akt signaling pathway and cAMP signaling pathway. The predicted LOC102172600 and LOC102191729 might affect the development of hair follicles and the curvature of wool by regulating the target genes. Our study provides novel insights into the potential roles of lncRNAs in the regulation of wool bending. In addition, the study offers a theoretical basis for further study of goat wool growth, so as to be a guidance and reference for breeding and improvement in the future.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Xiaogang Dong ◽  
Qin Pi ◽  
Anwaier Yuemaierabola ◽  
Wenjia Guo ◽  
Hailong Tian

Glioma is a type of malignant intracranial tumor. Extensive research has identified the participation of long noncoding RNAs (lncRNAs) in glioma progression. This study investigated the mechanism of LINC00294 in mitochondrial function and glioma cell apoptosis. Glioma miRNA and mRNA microarray datasets were obtained, and differentially expressed lncRNAs in glioma were screened through various databases. The LINC00294 expression in glioma patients and glioma cells was detected. Glioma cells were treated under hypoxic conditions and transfected with LINC00294 silencing. The apoptosis and mitochondrial function of glioma cells were measured. The expressions of and relations among miR-21-5p, CASKIN1, and cAMP in glioma cells were analyzed. Under hypoxic conditions and LINC00294 silencing, the apoptosis and mitochondrial function of glioma cells were detected after inhibiting miR-21-5p or overexpressing CASKIN1. Our results indicated that LINC00294 was downregulated in glioma. LINC00294 silencing inhibited glioma cell apoptosis under hypoxia. LINC00294 silencing reversed the inhibition of hypoxia on mitochondrial function under hypoxia. LINC00294 promoted the CASKIN1 expression by sponging miR-21-5p and activated the cAMP pathway. Inhibition of miR-21-5p or overexpression of CASKIN1 annulled the effects of LINC00294 silencing on mitochondrial function and glioma cell apoptosis under hypoxia. In conclusion, LINC00294 elevated the CASKIN1 expression by sponging miR-21-5p and activating the cAMP signaling pathway, thus inhibiting mitochondrial function and facilitating glioma cell apoptosis.


Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2826
Author(s):  
Zhifeng Li ◽  
Xiaoyun He ◽  
Xiaosheng Zhang ◽  
Jinlong Zhang ◽  
Xiaofei Guo ◽  
...  

CircRNA and miRNA, as classes of non-coding RNA, have been found to play pivotal roles in sheep reproduction. There are many reports of circRNA and miRNA in the ovary and uterus, but few in the oviduct. In this study, RNA-Seq was performed to analyze the expression profile of circRNA and miRNA in the oviduct during the follicular phase and luteal phase of sheep with FecBBB and FecB++ genotypes. The results showed that a total of 3223 circRNAs and 148 miRNAs were identified. A total of 15 DE circRNAs and 40 DE miRNAs were found in the comparison between the follicular phase and luteal phase, and 1 DE circRNA and 18 DE miRNAs were found in the comparison between the FecBBB genotype and FecB++ genotype. GO and KEGG analyses showed that the host genes of DE circRNAs were mainly enriched in the Rap1 signaling pathway, PI3K–Akt signaling pathway and neuroactive ligand–receptor interactions. Novel_circ_0004065, novel_circ_0005109, novel_circ_0012086, novel_circ_0014274 and novel_circ_0001794 were found to be possibly involved in the oviductal reproduction process. GO and KEGG analyses showed that the target genes of DE miRNAs were mainly enriched in insulin secretion, the cAMP signaling pathway, the cGMP–PKG signaling pathway, the Rap1 signaling pathway and the TGF-β signaling pathway, and the target genes LPAR1, LPAR2, FGF18, TACR3, BMP6, SMAD4, INHBB, SKP1 and TGFBR2 were found to be associated with the reproductive process. Miranda software was used to identify 27 miRNAs that may bind to 13 DE circRNAs, including miR-22-3p (target to novel_circ_0004065), miR-127, miR-136 (target to novel_circ_0000417), miR-27a (target to novel_circ_0014274) and oar-miR-181a (target to novel_circ_ 0017815). The results of this study will help to elucidate the regulatory mechanisms of circRNAs and miRNAs in sheep reproduction. Our study, although not establishing direct causal relationships of the circRNA and miRNA changes, enriches the sheep circRNA and miRNA database and provides a basis for further studies on sheep reproduction.


2021 ◽  
Vol 44 (8) ◽  
pp. 1101-1110
Author(s):  
Tsuyoshi Aoyama ◽  
Hiroki Kuriyama ◽  
Yuki Sato ◽  
Shungo Imai ◽  
Hitoshi Kashiwagi ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1007
Author(s):  
Qiaojian Yan ◽  
Zhimin Mao ◽  
Jingru Hong ◽  
Kun Gao ◽  
Manabu Niimi ◽  
...  

Tanshinone IIA (Tan IIA), an active ingredient of Danshen, is a well-used drug to treat cardiovascular diseases. Currently, the mechanisms involved remain poorly understood. Given that many actions of Tan IIA could be similarly achieved by hydrogen sulfide (H2S), we speculated that Tan IIA might work through the induction of endogenous H2S. This study was to test this hypothesis. Exposure to endothelial cells to Tan IIA elevated H2S-synthesizing enzyme cystathionine γ-Lyase (CSE), associated with an increased level of endogenous H2S and free thiol activity. Further analysis revealed that this effect of Tan IIA was mediated by an estrogen receptor (ER) and cAMP signaling pathway. It stimulated VASP and CREB phosphorylation. Inhibition of ER or PKA abolished the CSE-elevating effect, whereas activation of ER or PKA mimicked the effect of Tan IIA. In an oxidative endothelial cell injury model, Tan IIA potently attenuated oxidative stress and inhibited cell death. In support of a role of endogenous H2S, inhibition of CSE aggerated oxidative cell injury. On the contrary, supplement of H2S attenuated cell injury. Collectively, our study characterized endogenous H2S as a novel mediator underlying the pharmacological actions of Tan IIA. Given the multifaceted functions of H2S, the H2S-stimulating property of Tan IIA could be exploited for treating many diseases.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1430
Author(s):  
Fei Zhang ◽  
Xiaodong Zhang ◽  
Wei Ning ◽  
Xiangdong Zhang ◽  
Zhenyuan Ru ◽  
...  

Testicular development is critical for male animals’ reproduction and is tightly regulated by epigenetic factors. Circular RNAs (circRNAs) were recently identified in the testes of humans and bulls. However, the expression profile of circRNAs and their potential biological functions in boar testicular development remain unclear. We identified 34,521 and 31,803 circRNAs in piglet (30 d) and adult (210 d) boar testes by high-throughput sequencing, respectively. Bioinformatics analysis revealed that these circRNAs are widely distributed on autosomes and sex chromosomes. Some of the host genes can generate multiple circRNAs. A total of 2326 differentially expressed circRNAs (DECs) derived from 1526 host genes was found in testicular development, of which 1003 circRNAs were up-regulated in adult boar testes and 1323 circRNAs were down-regulated. Furthermore, gene ontology analysis of host genes of DECs revealed that these circRNAs are mainly involved in regulating spermatogenesis, cilia motility, and hormone biosynthesis. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that the DECs are markedly enriched to stem cell pluripotency regulation, tight junctions, adhesion junctions, and cAMP signaling pathway. These results indicate that circRNAs are abundantly expressed in boar testes and exhibit dynamic changes during testicular development.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1133
Author(s):  
Fabrizio Fontana ◽  
Patrizia Limonta

Understanding the molecular mechanisms underlying prostate cancer (PCa) progression towards its most aggressive, castration-resistant (CRPC) stage is urgently needed to improve the therapeutic options for this almost incurable pathology. Interestingly, CRPC is known to be characterized by a peculiar hormonal landscape. It is now well established that the androgen/androgen receptor (AR) axis is still active in CRPC cells. The persistent activity of this axis in PCa progression has been shown to be related to different mechanisms, such as intratumoral androgen synthesis, AR amplification and mutations, AR mRNA alternative splicing, increased expression/activity of AR-related transcription factors and coregulators. The hypothalamic gonadotropin-releasing hormone (GnRH), by binding to its specific receptors (GnRH-Rs) at the pituitary level, plays a pivotal role in the regulation of the reproductive functions. GnRH and GnRH-R are also expressed in different types of tumors, including PCa. Specifically, it has been demonstrated that, in CRPC cells, the activation of GnRH-Rs is associated with a significant antiproliferative/proapoptotic, antimetastatic and antiangiogenic activity. This antitumor activity is mainly mediated by the GnRH-R-associated Gαi/cAMP signaling pathway. In this review, we dissect the molecular mechanisms underlying the role of the androgen/AR and GnRH/GnRH-R axes in CRPC progression and the possible therapeutic implications.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yihan Wang ◽  
Yingmin Zhou ◽  
Malik Ahsan Ali ◽  
Jiaman Zhang ◽  
Wencan Wang ◽  
...  

Cryopreservation induces sperm cryoinjuries, including physiological and functional changes. However, the molecular mechanisms of sperm cryoinjury and cryoresistance are still unknown. Cryoresistance or the freeze tolerance of sperm varies across species, and boar sperm is more susceptible to cold stress. Contrary to boar sperm, giant panda sperm appears to be strongly freeze-tolerant and is capable of surviving repeated cycles of freeze-thawing. In this study, differentially expressed (DE) PIWI-interacting RNAs (piRNAs) of fresh and frozen-thawed sperm with different freeze tolerance capacity from giant panda and boar were evaluated. The results showed that 1,160 (22 downregulated and 1,138 upregulated) and 384 (110 upregulated and 274 downregulated) DE piRNAs were identified in giant panda and boar sperm, respectively. Gene ontology (GO) enrichment analysis revealed that the target DE messenger RNAs (mRNAs) of DE piRNAs were mainly enriched in biological regulation, cellular, and metabolic processes in giant panda and boar sperm. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the target DE mRNAs of DE piRNAs were only distributed in DNA replication and the cyclic adenosine monophosphate (cAMP) signaling pathway in giant panda, but the cAMP, cyclic guanosine monophosphate (cGMP), and mitogen-activated protein kinase (MAPK) signaling pathways in boar sperm were considered as part of the olfactory transduction pathway. In conclusion, we speculated that the difference in the piRNA profiles and the DE piRNAs involved in the cAMP signaling pathway in boar and giant panda may have contributed to the different freeze tolerance capacities between giant panda and boar sperm, which helps to elucidate the molecular mechanism behind sperm cryoinjury and cryoresistance.


Author(s):  
Xiaohua Zuo ◽  
Changdong Zhou ◽  
Xuepiao Zhu ◽  
Dan Liu ◽  
Yan Wang ◽  
...  

IntroductionOsteoporotic spinal fracture, characterized by high morbidity and mortality, has become a health burden for the aging population. The inactivation of the Wnt signaling has been proved to promote osteoporotic fractures. Our study is to identify the key genes, miRNAs, and pathways that possibly lead to osteoporosis and osteoporotic spinal fracture after the aberrant activation or mutation of Wnt signaling pathway.Material and methodsImpute R package was used to screen out the differently expressed genes (DEGs) and differently expressed miRNAs in GEO datasets. STRING and Metascape were used to construct protein-protein interactions (PPI) network, gene ontology (GO) enrichment and pathway enrichment. The relative expression of ADCY2, ADCY5, and GRIA1 in bone tissues was measured by RT-qPCR.Results562 DEGs were screened out using Impute R package, and a PPI network involving the 562 DEGs was constructed using STRING and Metascape. GO enrichment and pathway enrichment showed that the 562 DEGs were associated with membrane protein-related signaling pathways. Then, 75 genes between the target genes of miR-18a-3p and 562 DEGs were overlapped using Venny 2.1.0. Finally, the cAMP signaling pathway was identified as the key pathway, whilst ADCY2, ADCY5, and GRIA1 were identified the key genes that possibly participate in osteoporotic spinal fracture after the manipulation of Wnt signaling pathway, which was further proved by their excessive downregulation in osteoporotic patients with spinal fracture.ConclusionsThe results demonstrated that ADCY2, ADCY5, and GRIA1 were the key genes to regulate the cAMP signaling pathway in osteoporotic spinal fracture after abnormal Wnt signaling.


Sign in / Sign up

Export Citation Format

Share Document