Nitric oxide regulates oxygen uptake and hydrogen peroxide release by the isolated beating rat heart

1998 ◽  
Vol 274 (1) ◽  
pp. C112-C119 ◽  
Author(s):  
Juan J. Poderoso ◽  
Jorge G. Peralta ◽  
Constanza L. Lisdero ◽  
Maria Cecilia Carreras ◽  
Marcelo Radisic ◽  
...  

Isolated rat heart perfused with 1.5–7.5 μM NO solutions or bradykinin, which activates endothelial NO synthase, showed a dose-dependent decrease in myocardial O2uptake from 3.2 ± 0.3 to 1.6 ± 0.1 (7.5 μM NO, n = 18, P < 0.05) and to 1.2 ± 0.1 μM O2 ⋅ min−1 ⋅ g tissue−1 (10 μM bradykinin, n = 10, P < 0.05). Perfused NO concentrations correlated with an induced release of hydrogen peroxide (H2O2) in the effluent ( r = 0.99, P < 0.01). NO markedly decreased the O2 uptake of isolated rat heart mitochondria (50% inhibition at 0.4 μM NO, r = 0.99, P < 0.001). Cytochrome spectra in NO-treated submitochondrial particles showed a double inhibition of electron transfer at cytochrome oxidase and between cytochrome b and cytochrome c, which accounts for the effects in O2uptake and H2O2 release. Most NO was bound to myoglobin; this fact is consistent with NO steady-state concentrations of 0.1–0.3 μM, which affect mitochondria. In the intact heart, finely adjusted NO concentrations regulate mitochondrial O2uptake and superoxide anion production (reflected by H2O2), which in turn contributes to the physiological clearance of NO through peroxynitrite formation.

1991 ◽  
Vol 69 (11) ◽  
pp. 1705-1712 ◽  
Author(s):  
Noburu Konno ◽  
K. J. Kako

Hydrogen peroxide (H2O2) and hypochlorite (HOCl) cause a variety of cellular dysfunctions. In this study we examined the effects of these agents on the electrical potential gradient across the inner membrane of mitochondria in situ in isolated rat heart myocytes. Myocytes were prepared by collagenase digestion and incubated in the presence of H2O2 or HOCl. Transmembrane electrical gradients were measured by distribution of [3H]triphenylmethylphosphonium+, a lipophilic cation. The particulate fraction was separated from the cytosolic compartment first by permeabilization using digitonin, followed by rapid centrifugal sedimentation through a bromododecane layer. We found that the mitochondrial membrane potential (161 ± 7 mV, negative inside) was relatively well maintained under oxidant stress, i.e., the potential was decreased only at high concentrations of HOCl and H2O2 and gradually with time. The membrane potential of isolated rat heart mitochondria was affected similarly by H2O2 and HOCl in a concentration- and time-dependent manner. High concentrations of oxidants also reduced the cellular ATP level but did not significantly change the matrix volume. When the extra-mitochondrial free calcium concentration was increased in permeabilized myocytes, the transmembrane potential was decreased proportionally, and this decrease was potentiated further by H2O2. These results support the view that heart mitochondria are equipped with well-developed defense mechanisms against oxidants, but the action of H2O2 on the transmembrane electrical gradient is exacerbated by an increase in cytosolic calcium. Keywords: ATP, calcium, cardiomyocyte, cell defense, mitochondrial membrane potential, oxidant, triphenylmethylphosphonium.


1988 ◽  
Vol 84 (2) ◽  
pp. 173-175 ◽  
Author(s):  
James M. Brown ◽  
Lance S. Terada ◽  
Michael A. Grosso ◽  
Glenn J. Whitman ◽  
Stephen E. Velasco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document