scholarly journals KDR activation is crucial for VEGF165-mediated Ca2+mobilization in human umbilical vein endothelial cells

1999 ◽  
Vol 276 (1) ◽  
pp. C176-C181 ◽  
Author(s):  
Sonia A. Cunningham ◽  
Tuan M. Tran ◽  
M. Pia Arrate ◽  
Robert Bjercke ◽  
Tommy A. Brock

We have prepared a polyclonal mouse antibody directed against the first three immunoglobulin-like domains of the kinase insert domain-containing receptor (KDR) tyrosine kinase. It possesses the ability to inhibit binding of the 165-amino acid splice variant of vascular endothelial cell growth factor (VEGF165) to recombinant KDR in vitro as well as to reduce VEGF165binding to human umbilical vein endothelial cells (HUVEC). These results confirm that the first three immunoglobulin-like domains of KDR are involved in VEGF165interactions. The anti-KDR antibody is able to completely block VEGF165-mediated intracellular Ca2+mobilization in HUVEC. Therefore, it appears that binding of VEGF165to the fms-like tyrosine kinase (Flt-1) in these cells does not translate into a Ca2+response. This is further exemplified by the lack of response to placental growth factor (PlGF), an Flt-1-specific ligand. Additionally, PlGF is unable to potentiate the effects of submaximal concentrations of VEGF165. Surprisingly, the VEGF-PlGF heterodimer was also very inefficient at eliciting a Ca2+signaling event in HUVEC. We conclude that KDR activation is crucial for mobilization of intracellular Ca2+in HUVEC in response to VEGF165.

2019 ◽  
Vol 316 (5) ◽  
pp. H1178-H1191 ◽  
Author(s):  
Ling Yang ◽  
Yujie Zhang ◽  
Yadong Ma ◽  
Jun Du ◽  
Luo Gu ◽  
...  

Melatonin is a natural hormone involved in the regulation of circadian rhythm, immunity, and cardiovascular function. In the present study, we focused on the mechanism of melatonin in the regulation of vascular permeability. We found that melatonin could inhibit both VEGF- and EGF-induced monolayer permeability of human umbilical vein endothelial cells (HUVECs) and change the tyrosine phosphorylation of vascular-endothelial (VE-)cadherin, which was related to endothelial barrier function. In addition, phospho-AKT (Ser473) and phospho-ERK(1/2) played significant roles in the regulation of VE-cadherin phosphorylation. Both the phosphatidylinositol 3-kinase/AKT inhibitor LY49002 and MEK/ERK inhibitor U0126 could inhibit the permeability of HUVECs, but with different effects on tyrosine phosphorylation of VE-cadherin. Melatonin can influence the two growth factor-induced phosphorylation of AKT (Ser473) but not ERK(1/2). Our results show that melatonin can inhibit growth factor-induced monolayer permeability of HUVECs by influencing the phosphorylation of AKT and VE-cadherin. Melatonin can be a potential treatment for diseases associated with abnormal vascular permeability. NEW & NOTEWORTHY We found that melatonin could inhibit both EGF- and VEGF-induced monolayer permeability of human umbilical vein endothelial cells, which is related to phosphorylation of vascular-endothelial cadherin. Blockade of phosphatidylinositol 3-kinase/AKT and MEK/ERK pathways could inhibit the permeability of human umbilical vein endothelial cells, and phosphorylation of AKT (Ser473) might be a critical event in the changing of monolayer permeability and likely has cross-talk with the MEK/ERK pathway.


2002 ◽  
Vol 282 (6) ◽  
pp. L1330-L1338 ◽  
Author(s):  
D. Michael Shasby ◽  
Dana R. Ries ◽  
Sandra S. Shasby ◽  
Michael C. Winter

Histamine increases microvascular permeability by creating small transitory (100–400 nm) gaps between adjacent endothelial cells at sites of vascular endothelial (VE)-cadherin-based adhesion. We examined the effects of histamine on the proteins within the VE-cadherin-based adherens junction in primary human umbilical vein endothelial cells. VE-cadherin is linked not only by β- and α-catenin to cortical actin but also by γ-catenin to the intermediate filament vimentin. In mature human umbilical vein cultures, the VE-cadherin immunoprecipitate contained equivalent amounts of α- and β-catenin, 130% as much β- as γ-catenin, and 50% as much actin as vimentin. Within 60 s, histamine decreased the fraction of VE-cadherin in the insoluble portion of the cell lysate by 35 ± 1.5%. At the same time, histamine decreased the amount of vimentin that immunoprecipitated with VE-cadherin by 50 ± 6%. Histamine did not affect the amount of actin or the amount of α-, β-, or γ-catenin that immunoprecipitated with VE-cadherin. Within 60 s, histamine simulated a doubling in the phosphorylation of VE-cadherin and β- and γ-catenin. The VE-cadherin immunoprecipitate contained kinase activity that phosphorylated VE-cadherin and γ-catenin in vitro.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Chih-Hsin Lin ◽  
JenHer Lu ◽  
Hsinyu Lee

Lysophosphatidic acid (LPA) is a lipid mediator which binds to G-protein-coupled receptors and regulates various cellular responses, including inflammation of endothelial cells. Interleukin- (IL-) 1β, a proinflammatory cytokine, is elevated upon LPA treatment in human umbilical vein endothelial cells (HUVECs). Previous studies indicated that LPA upregulates vascular endothelial growth factor- (VEGF-) C and lymphatic marker expressions in HUVECs. However, the relationships between LPA-induced VEGF-C and IL-1βexpressions are not clear. In this paper, we demonstrated that, in the presence of AF12198, an inhibitor of the IL-1 receptor abolished LPA-induced VEGF-C and lymphatic marker expressions in HUVECs. Furthermore, LPA-inducedin vitrotube formation of HUVECs was also suppressed by pretreatment with AF12198. Our results suggest that LPA-stimulated lymphangiogenesis in HUVECs is mediated through IL-1β-induced VEGF-C expression.


Sign in / Sign up

Export Citation Format

Share Document