Measurements of mitochondrial K+ fluxes in whole rat hearts using 87Rb-NMR

1999 ◽  
Vol 276 (1) ◽  
pp. C193-C200 ◽  
Author(s):  
Marco L. H. Gruwel ◽  
Bozena Kuzio ◽  
Roxanne Deslauriers ◽  
Valerie V. Kupriyanov

The rubidium efflux from hypothermic rat hearts perfused by the Langendorff method at 20°C was studied. At this temperature 87Rb-NMR efflux experiments showed the existence of two 87Rb pools: cytoplasmic and mitochondrial. Rat heart mitochondria showed a very slow exchange of mitochondrial Rb+ for cytoplasmic K+. After washout of cytosolic Rb+, mitochondria kept a stable Rb+level for >30 min. Rb+ efflux from mitochondria was stimulated with 0.1 mM 2,4-dinitrophenol (DNP), by sarcolemmal permeabilization and concomitant cellular energy depletion by saponin (0.01 mg/ml for 4 min) in the presence of a perfusate mimicking intracellular conditions, or by ATP-sensitive K (KATP) channel openers. DNP, a mitochondrial uncoupler, caused the onset of mitochondrial Rb+ exchange; however, the washout was not complete (80 vs. 56% in control). Energy deprivation by saponin, which permeabilizes the sarcolemma, resulted in a rapid and complete Rb+ efflux. The mitochondrial Rb+ efflux rate constant ( k) decreased in the presence of glibenclamide, a KATP channel inhibitor (5 μM; k = 0.204 ± 0.065 min−1; n = 8), or in the presence of ATP plus phosphocreatine (1.0 and 5.0 mM, respectively; k = 0.134 ± 0.021 min−1; n = 4) in the saponin experiments (saponin only; k = 0.321 ± 0.079 min−1; n = 3), indicating the inhibition of mitochondrial KATP channels. Thus hypothermia in combination with 87Rb-NMR allowed the probing of the mitochondrial K+ pool in whole hearts without mitochondrial isolation.

2006 ◽  
Vol 291 (6) ◽  
pp. C1198-C1207 ◽  
Author(s):  
Lamar K. Gerber ◽  
Bruce J. Aronow ◽  
Mohammed A. Matlib

A number of reports indicate that a long-chain free fatty acid export system may be operating in mitochondria. In this study, we sought evidence of its existence in rat heart mitochondria. To determine its potential role, we also sought evidence of its activation or inhibition in streptozotocin (STZ)-induced diabetic rat heart mitochondria. If confirmed, it could be a novel mechanism for regulation of long-chain fatty acid oxidation (FAO) in mitochondria. To obtain evidence of its existence, we tested whether heart mitochondria presented with palmitoyl-carnitine can generate and export palmitate. We found that intact mitochondria indeed generate and export palmitate. We have also found that the rates of these processes are markedly higher in STZ-diabetic rat heart mitochondria, in which palmitoyl-carnitine oxidation is also increased. Since mitochondrial thioesterase-1 (MTE-1) hydrolyzes acyl-CoA to CoA-SH + free fatty acid, and uncoupling protein-3 (UCP-3), reconstituted in liposomes, transports free fatty acids, we examined whether these proteins are also increased in STZ-diabetic rat heart mitochondria. We found that both of these proteins are indeed increased. Gene expression profile analysis revealed striking expression of mitochondrial long-chain fatty acid transport and oxidation genes, accompanying overexpression of MTE-1 and UCP-3 in STZ-diabetic rat hearts. Our findings provide the first direct evidence for the existence of a long-chain free fatty acid generation and export system in mitochondria and its activation in STZ-diabetic rat hearts in which FAO is enhanced. We suggest that its activation may facilitate, and inhibition may limit, enhancement of FAO.


2015 ◽  
Vol 308 (8) ◽  
pp. C631-C641 ◽  
Author(s):  
Michele Visentin ◽  
Ersin Selcuk Unal ◽  
Mitra Najmi ◽  
Andras Fiser ◽  
Rongbao Zhao ◽  
...  

The proton-coupled folate transporter (PCFT) mediates intestinal folate absorption and transport of folates across the choroid plexus. This study focuses on the role of Tyr residues in PCFT function. The substituted Cys-accessibility method identified four Tyr residues (Y291, Y362, Y315, and Y414) that are accessible to the extracellular compartment; three of these (Y291, Y362, and Y315) are located within or near the folate binding pocket. When the Tyr residues were replaced with Cys or Ala, these mutants showed similar (up to 6-fold) increases in influx Vmax and Kt/ Ki for [3H]methotrexate and [3H]pemetrexed. When the Tyr residues were replaced with Phe, these changes were moderated or absent. When Y315A PCFT was used as representative of the mutants and [3H]pemetrexed as the transport substrate, this substitution did not increase the efflux rate constant. Furthermore, neither influx nor efflux mediated by Y315A PCFT was transstimulated by the presence of substrate in the opposite compartment; however, substantial bidirectional transstimulation of transport was mediated by wild-type PCFT. This resulted in a threefold greater efflux rate constant for cells that express wild-type PCFT than for cells that express Y315 PCFT under exchange conditions. These data suggest that these Tyr residues, possibly through their rigid side chains, secure the carrier in a high-affinity state for its folate substrates. However, this may be achieved at the expense of constraining the carrier's mobility, thereby decreasing the rate at which the protein oscillates between its conformational states. The Vmax generated by these Tyr mutants may be so rapid that further augmentation during transstimulation may not be possible.


1978 ◽  
Vol 173 (2) ◽  
pp. 669-680 ◽  
Author(s):  
N J Hutson ◽  
A L Kerbey ◽  
P J Randle ◽  
P H Sugden

1. The conversion of inactive (phosphorylated) pyruvate dehydrogenase complex into active (dephosphorylated) complex by pyruvate dehydrogenase phosphate phosphatase is inhibited in heart mitochondria prepared from alloxan-diabetic or 48h-starved rats, in mitochondria prepared from acetate-perfused rat hearts and in mitochondria prepared from normal rat hearts incubated with respiratory substrates for 6 min (as compared with 1 min). 2. This conclusion is based on experiments with isolated intact mitochondria in which the pyruvate dehydrogenase kinase reaction was inhibited by pyruvate or ATP depletion (by using oligomycin and carbonyl cyanide m-chlorophenylhydrazone), and in experiments in which the rate of conversion of inactive complex into active complex by the phosphatase was measured in extracts of mitochondria. The inhibition of the phosphatase reaction was seen with constant concentrations of Ca2+ and Mg2+ (activators of the phosphatase). The phosphatase reaction in these mitochondrial extracts was not inhibited when an excess of exogenous pig heart pyruvate dehydrogenase phosphate was used as substrate. It is concluded that this inhibition is due to some factor(s) associated with the substrate (pyruvate dehydrogenase phosphate complex) and not to inhibition of the phosphatase as such. 3. This conclusion was verified by isolating pyruvate dehydrogenase phosphate complex, free of phosphatase, from hearts of control and diabetic rats an from heart mitochondria incubed for 1min (control) or 6min with respiratory substrates. The rates of re-activation of the inactive complexes were then measured with preparations of ox heart or rat heart phosphatase. The rates were lower (relative to controls) with inactive complex from hearts of diabetic rats or from heart mitochondria incubated for 6min with respiratory substrates. 4. The incorporation of 32Pi into inactive complex took 6min to complete in rat heart mitocondria. The extent of incorporation was consistent with three or four sites of phosphorylation in rat heart pyruvate dehydrogenase complex. 5. It is suggested that phosphorylation of sites additional to an inactivating site may inhibit the conversion of inactive complex into active complex by the phosphatase in heart mitochondria from alloxan-diabetic or 48h-starved rats or in mitochondria incubated for 6min with respiratory substrates.


1994 ◽  
Vol 47 (3) ◽  
pp. 549-553 ◽  
Author(s):  
Yu-Chiang Lo ◽  
Teng Che-Ming ◽  
Chen Chieh-Fu ◽  
Chen Chien-Chih ◽  
Hong Chuang-Ye

2007 ◽  
Vol 415 (1) ◽  
pp. 206-210 ◽  
Author(s):  
S. M. Korotkov ◽  
V. P. Nesterov ◽  
L. V. Emel’yanova ◽  
N. N. Ryabchikov

2017 ◽  
Vol 232 (2) ◽  
pp. 221-235 ◽  
Author(s):  
Natalia Pavón ◽  
Alfredo Cabrera-Orefice ◽  
Juan Carlos Gallardo-Pérez ◽  
Cristina Uribe-Alvarez ◽  
Nadia A Rivero-Segura ◽  
...  

Oophorectomy in adult rats affected cardiac mitochondrial function. Progression of mitochondrial alterations was assessed at one, two and three months after surgery: at one month, very slight changes were observed, which increased at two and three months. Gradual effects included decrease in the rates of oxygen consumption and in respiratory uncoupling in the presence of complex I substrates, as well as compromised Ca2+ buffering ability. Malondialdehyde concentration increased, whereas the ROS-detoxifying enzyme Mn2+ superoxide dismutase (MnSOD) and aconitase lost activity. In the mitochondrial respiratory chain, the concentration and activity of complex I and complex IV decreased. Among other mitochondrial enzymes and transporters, adenine nucleotide carrier and glutaminase decreased. 2-Oxoglutarate dehydrogenase and pyruvate dehydrogenase also decreased. Data strongly suggest that in the female rat heart, estrogen depletion leads to progressive, severe mitochondrial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document