Expression of rab11a N124I in gastric parietal cells inhibits stimulatory recruitment of the H+-K+-ATPase

1999 ◽  
Vol 277 (3) ◽  
pp. C361-C372 ◽  
Author(s):  
Joseph G. Duman ◽  
Kamala Tyagarajan ◽  
Michelle S. Kolsi ◽  
Hsiao-Ping H. Moore ◽  
John G. Forte

Stimulation of the gastric parietal cell results in a massive redistribution of H+-K+-ATPase from cytoplasmic tubulovesicles to the apical plasma membrane. Previous studies have implicated the small GTPase rab11 in this process. Using matrix-assisted laser desorption mass spectrometry, we confirmed that rab11 is associated with H+-K+-ATPase-enriched gastric microsomes. A stoichiometry of one rab11 per six copies of H+-K+-ATPase was estimated. Furthermore, rab11 exists in at least three forms on rabbit gastric microsomes: the two most prominent resemble rab11a, whereas the third resembles rab11b. Using an adenoviral expression system, we expressed the dominant negative mutant rab11a N124I in primary cultures of rabbit parietal cells under the control of the tetracycline transactivator protein (tTA). The mutant was well expressed with a distribution similar to that of the H+-K+-ATPase. Stimulation of these cultures with histamine and IBMX was assessed by measuring the aminopyrine (AP) uptake relative to resting cells (AP index). In experiments on six culture preparations, stimulated uninfected cells gave an AP index of 10.0 ± 2.9, whereas parallel cultures expressing rab11a N124I were poorly responsive to stimulation, with a mean AP index of 3.2 ± 0.9. Control cultures expressing tTA alone or tTA plus actin responded equally well to stimulation, giving AP index values of 9.0 ± 3.1 and 9.6 ± 0.9, respectively. Thus inhibition by rab11a N124I is not simply due to adenoviral infection. The AP uptake data were confirmed by immunocytochemistry. In uninfected cells, H+-K+-ATPase demonstrated a broad cytoplasmic distribution, but it was cleared from the cytoplasm and associated with apically derived membranes on stimulation. In cells expressing rab11a N124I, H+-K+-ATPase maintained its resting localization on stimulation. Furthermore, this effect could be alleviated by culturing infected cells in the presence of tetracycline, which prevents expression of the mutant rab11. We therefore conclude that rab11a is the prominent GTPase associated with gastric microsomes and that it plays a role in parietal cell activation.

2001 ◽  
Vol 281 (2) ◽  
pp. C407-C417 ◽  
Author(s):  
David A. Ammar ◽  
Phuong N. B. Nguyen ◽  
John G. Forte

Acid secretion by the gastric parietal cell is controlled through movement of vesicles containing the proton pump, the H+-K+-ATPase (HK). We have used latrunculin B (Lat B), which binds to monomeric actin, to investigate actin turnover in the stimulated parietal cell. In isolated gastric glands, relatively high concentrations of Lat B were required to inhibit acid accumulation (ED50∼70 μM). Cultured parietal cells stimulated in the presence of low Lat B (0.1–1 μM) have reduced lamellipodia formation and some aberrant punctate phalloidin-stained structures, but translocation of HK and vacuolar swelling appeared unaffected. High Lat B (10–50 μM) resulted in gross changes in actin organization (punctate phalloidin-stained structures throughout the cell and nucleus) and reduced translocation of HK and vacuolar swelling. Resting parietal cells treated with high Lat B showed minor effects on morphology and F-actin staining. If resting cells treated with high Lat B were washed immediately before stimulation, they exhibited a normal stimulated morphology. These data suggest distinct pools of parietal cell actin: a pool highly susceptible to Lat B primarily involved in motile function of cultured cells; and a Lat B-resistant pool, most likely microvillar filaments, that is essential for secretion. Furthermore, the stimulation process appears to accentuate the effects of Lat B, most likely through Lat B binding to monomer actin liberated by the turnover of the motile actin filament pool.


1993 ◽  
Vol 264 (4) ◽  
pp. G637-G644 ◽  
Author(s):  
J. Cuppoletti ◽  
P. Huang ◽  
M. A. Kaetzel ◽  
D. H. Malinowska

The bee venom polypeptide melittin binds to and inhibits the gastric hydrogen-potassium-adenosinetriphosphatase (H(+)-K(+)-ATPase). A search for parietal cell proteins with a melittin-like structure was carried out. A 67-kDa (doublet) protein, which reacted with a polyclonal antimelittin antibody, was found in purified rabbit parietal cells. The protein exhibited reversible stimulus-dependent redistribution from cytosol to (total) membranes. It was also found to be associated with H(+)-K(+)-ATPase-containing membranes when isolated from the gastric mucosae of rabbits treated with histamine, but not with cimetidine. The presence of the protein correlated with the ability of the membrane preparations to exhibit ionophore-independent HCl accumulation, a characteristic of gastric membranes from histamine-stimulated animals. The 67-kDa melittin-like protein may play a role in the functional changes in the gastric parietal cell that are involved in stimulation of HCl secretion.


1998 ◽  
Vol 275 (1) ◽  
pp. C163-C170 ◽  
Author(s):  
Benjamin C. Calhoun ◽  
Lynne A. Lapierre ◽  
Catherine S. Chew ◽  
James R. Goldenring

Previous investigations in several systems have demonstrated that Rab3 family members redistribute to soluble fractions on fusion of secretory granules with target plasma membranes. Rab proteins are then recycled back onto mature secretory vesicles after reinternalization of the membrane. Although this cycle is well established for Rab3, far less is known about redistribution of other Rab proteins during vesicle fusion and recycling. In the gastric parietal cell, Rab11a is associated with H-K-ATPase-containing tubulovesicles, which fuse with the apical plasma membrane (secretory canaliculus) in response to agonists such as histamine. We have analyzed distribution of Rab11a and other tubulovesicle proteins in resting and histamine-stimulated rabbit parietal cells. Stimulation of isolated gastric glands in the presence of 100 μM histamine and 100 μM 3-isobutyl-1-methylxanthine did not cause a significant increase in soluble Rab11a. H-K-ATPase, Rab11a, Rab25, syntaxin 3, and SCAMPs increased immunoreactivity in stimulus-associated vesicles prepared from rabbits treated with histamine compared with those from ranitidine-treated animals. The large GTPase dynamin was found in both vesicle preparations, but there was no change in amount of immunoreactivity. Immunofluorescence staining of resting and histamine-stimulated primary cultures of parietal cells demonstrated redistribution of H-K-ATPase and Rab11a to F-actin-rich canalicular membranes. Dynamin was present on canalicular membranes in resting and stimulated cells. These results indicate that Rab11a does not cycle off the membrane during the process of tubulovesicle fusion with the secretory canaliculus. Thus Rab11a may remain associated with recycling apical membrane vesicle populations.


1985 ◽  
Vol 231 (3) ◽  
pp. 641-649 ◽  
Author(s):  
B H Hirst ◽  
J G Forte

When isolated from resting parietal cells, the majority of the (H+ + K+)-ATPase activity was recovered in the microsomal fraction. These microsomal vesicles demonstrated a low K+ permeability, such that the addition of valinomycin resulted in marked stimulation of (H+ + K+)-ATPase activity, and proton accumulation. When isolated from stimulated parietal cells, the (H+ + K+)-ATPase was redistributed to larger, denser vesicles: stimulation-associated (s.a.) vesicles. S.a. vesicles showed an increased K+ permeability, such that maximal (H+ + K+)-ATPase and proton accumulation activities were observed in low K+ concentrations and no enhancement of activities occurred on the addition of valinomycin. The change in subcellular distribution of (H+ + K+)-ATPase correlated with morphological changes observed with stimulation of parietal cells, the microsomes and s.a. vesicles derived from the intracellular tubulovesicles and the apical plasma membrane, respectively. Total (H+ + K+)-ATPase activity recoverable from stimulated gastric mucosa was 64% of that from resting tissue. Therefore, we tested for latent activity in s.a. vesicles. Permeabilization of s.a. vesicles with octyl glucoside increased (H+ + K+)-ATPase activity by greater than 2-fold. Latent (H+ + K+)-ATPase activity was resistant to highly tryptic conditions (which inactivated all activity in gastric microsomes). About 20% of the non-latent (H+ + K+)-ATPase activity was also resistant to trypsin digestion. We interpret these results as indicating that, of the s.a. vesicles, approx. 55% have a right-side-out orientation and are impermeable to ATP, 10% right-side-out and permeable to ATP, and 35% have an inside-out orientation.


1989 ◽  
Vol 256 (6) ◽  
pp. G1082-G1089 ◽  
Author(s):  
D. K. Hanzel ◽  
T. Urushidani ◽  
W. R. Usinger ◽  
A. Smolka ◽  
J. G. Forte

Monoclonal antibodies were raised against an 80-kDa phosphoprotein (80K) that is phosphorylated upon stimulation of gastric acid secretion and that copurifies with the acid-forming H+-K+-ATPase isolated from stimulated tissue. These antibodies were used to demonstrate that in the gastric mucosa 80K is limited to parietal cells and not found in surface, mucous neck, or chief cells. 80K was also found in other transporting epithelia, including intestine and kidney, but was not found in brain, liver, red blood cells, or colon. Immunohistological localization of 80K in resting glands revealed a fine network, projecting from the gland lumen and anastomosing throughout the parietal cell. This network is quite similar to the staining pattern for F-actin contained in microvilli that line the apical membrane of parietal cells. Stimulation of acid secretion rearranges 80K to a more rugose pattern filling the entire cell. In stimulated cells the distribution pattern of 80K is indistinguishable from that stained with antibodies against the H+-K+-ATPase. These data strongly suggest that 80K is an apical membrane protein of the parietal cell.


2005 ◽  
Vol 289 (2) ◽  
pp. G320-G331 ◽  
Author(s):  
Catherine S. Chew ◽  
Curtis T. Okamoto ◽  
Xunsheng Chen ◽  
Ruby Thomas

Developmentally regulated brain proteins (drebrins) are highly expressed in brain where they may regulate actin filament formation in dendritic spines. Recently, the drebrin E2 isoform was detected in certain epithelial cell types including the gastric parietal cell. In gastric parietal cells, activation of HCl secretion is correlated with actin filament formation and elongation within intracellular canaliculi, which are the sites of acid secretion. The aim of this study was to define the pattern of drebrin expression in gland units in the intact rabbit oxyntic gastric mucosa and to initiate approaches to define the functions of this protein in parietal cells. Drebrin E2 expression was limited entirely or almost entirely to parietal cells and depended upon the localization of parietal cells along the gland axis. Rabbit drebrin E2 was cloned and found to share 86% identity with human drebrin 1a and to possess a number of cross-species conserved protein-protein interaction and phosphorylation consensus sites. Two-dimensional Western blot and phosphoaffinity column analyses confirmed that drebrin is phosphorylated in parietal cells, and several candidate phosphorylation sites were identified by mass spectrometry. Overexpression of epitope-tagged drebrin E2 led to the formation of microspikes and F-actin-rich ring-like structures in cultured parietal cells and suppressed cAMP-dependent acid secretory responses. In Madin-Darby canine kidney cells, coexpression of epitope-tagged drebrin and the Rho family GTPase Cdc42, which induces filopodial extension, produced an additive increase in the length of microspike projections. Coexpression of dominant negative Cdc42 with drebrin E2 did not prevent drebrin-induced microspike formation. These findings suggest that 1) drebrin can induce the formation of F-actin-rich membrane projections by Cdc42-dependent and -independent mechanisms; and that 2) drebrin plays an active role in directing the secretagogue-dependent formation of F-actin-rich filaments on the parietal cell canalicular membrane. Finally, the differential distribution of drebrin in parietal cells along the gland axis suggests that drebrin E2 may be an important marker of parietal cell differentiation and functionality.


2004 ◽  
Vol 286 (3) ◽  
pp. C495-C506 ◽  
Author(s):  
Danuta H. Malinowska ◽  
Ann M. Sherry ◽  
Kirti P. Tewari ◽  
John Cuppoletti

Our objective was to identify and localize a K+ channel involved in gastric HCl secretion at the parietal cell secretory membrane and to characterize and compare the functional properties of native and recombinant gastric K+ channels. RT-PCR showed that mRNA for Kir2.1 was abundant in rabbit gastric mucosa with lesser amounts of Kir4.1 and Kir7.1, relative to β-actin. Kir2.1 mRNA was localized to parietal cells of rabbit gastric glands by in situ RT-PCR. Resting and stimulated gastric vesicles contained Kir2.1 by Western blot analysis at ∼50 kDa as observed with in vitro translation. Immunoconfocal microscopy showed that Kir2.1 was present in parietal cells, where it colocalized with H+-K+-ATPase and ClC-2 Cl- channels. Function of native K+ channels in rabbit resting and stimulated gastric mucosal vesicles was studied by reconstitution into planar lipid bilayers. Native gastric K+ channels exhibited a linear current-voltage relationship and a single-channel slope conductance of ∼11 pS in 400 mM K2SO4. Channel open probability (Po) in stimulated vesicles was high, and that of resting vesicles was low. Reduction of extracellular pH plus PKA treatment increased resting channel Po to ∼0.5 as measured in stimulated vesicles. Full-length rabbit Kir2.1 was cloned. When stably expressed in Chinese hamster ovary (CHO) cells, it was activated by reduced extracellular pH and forskolin/IBMX with no effects observed in nontransfected CHO cells. Cation selectivity was K+ = Rb+ >> Na+ = Cs+ = Li+ = NMDG+. These findings strongly suggest that the Kir2.1 K+ channel may be involved in regulated gastric acid secretion at the parietal cell secretory membrane.


2002 ◽  
Vol 115 (6) ◽  
pp. 1251-1258 ◽  
Author(s):  
Joseph G. Duman ◽  
Nimesh J. Pathak ◽  
Mark S. Ladinsky ◽  
Kent L. McDonald ◽  
John G. Forte

There is general agreement that stimulation and consequent secretion of gastric parietal cells result in a great expansion of the apical canalicular membrane at the expense of an extensive intracellular network of membranes rich in the gastric proton pump (H,K-ATPase). However, there is ongoing controversy as to the precise nature of the intracellular membrane network,conventionally called tubulovesicles. At the heart of this controversy lies the question of whether tubulovesicles are a distinct membrane compartment or whether they are continuous with the apical plasma membrane.To address this controversy we used high-pressure, rapid freezing techniques to fix non-stimulated (resting) rabbit gastric glands for electron microscopy. Ultra-thin (60-70 nm) serial sections were used for conventional TEM; 400-500 nm sections were used for tomography. Images were digitized and models constructed using Midas and Imod software(http://bio3d.colorado.edu). Images were aligned and contours drawn on specific cellular structures. The contours from a stack of serial sections were arranged into objects and meshed into 3D structures. For resting parietal cells our findings are as follows:(1) The apical canaliculus is a microvilli-decorated, branching membrane network that extends into and throughout the parietal cell. This agrees well with a host of previous studies. (2) The plentiful mitochondria form an extensive reticular network throughout the cytoplasm. This has not previously been reported for the parietal cell, and the significance of this observation and the dynamics of the mitochondrial network remain unknown. (3)H,K-ATPase-rich membranes do include membrane tubules and vesicles; however,the tubulovesicular compartment is chiefly comprised of small stacks of cisternae. Thus a designation of tubulocisternae seems appropriate; however,in the resting cell there are no continuities between the apical canaliculus and the tubulocisternae or between tubulocisternae. These data support the recruitment-recycling model of parietal cell stimulation.


1996 ◽  
Vol 271 (4) ◽  
pp. G640-G649 ◽  
Author(s):  
K. Nakamura ◽  
C. J. Zhou ◽  
J. Parente ◽  
C. S. Chew

Epidermal growth factor (EGF) is a potent mitogen for many cell types; however, the best known effect of EGF on gastric parietal cell HCl secretion is inhibition of this response. Using rabbit parietal cells in primary culture, we recently showed that the effect of EGF is biphasic with acute inhibition followed by sustained enhancement of acid secretory-related responses. We hypothesized that EGF might activate a mitogen-activated protein (MAP) kinase signaling pathway in parietal cells, and this pathway might play a role in mediating sustained and/or acute effects of EGF on parietal cell acid secretory-related functions [C. S. Chew, K. Nakamura, and A. C. Petropolous. Am. J. Physiol. 267 (Gastrointest. Liver Physiol. 30): G818-G826, 1994]. We used several methodological approaches to demonstrate the presence of MAP kinase (MAPK) isoforms, extracellular signal-regulated kinases (ERKs) 1 and 2, in parietal cells and to begin to characterize their mechanisms of activation in this highly differentiated cell type. In acutely isolated, 90-98% enriched parietal cells, EGF biphasically activated ERK-1 and ERK-2, with peak response occurring at approximately 5 min followed by a sustained lower level of activation for at least 2 h. The EC50 for EGF (1.2 +/- 0.4 nM) was similar to the previously determined EC50 for the stimulatory effect of EGF on acid secretory responses. In contrast to EGF, the phorbol ester protein kinase C activator 12-O-tetradecanoylphorbol 13-acetate (TPA) induced a sustained activation of ERK-1 and ERK-2 for at least 2 h. Carbachol also activated ERK-1 and ERK-2; however, this response was weaker and monophasic. Neither the Ca2+ ionophore ionomycin nor the adenylyl cyclase activator forskolin altered basal or stimulated ERK activity. Carbachol, but not EGF or TPA, also activated an unidentified 70-kDa protein kinase as detected with in-gel myelin basic protein (MBP) kinase renaturation assays. Parietal cell MAPK activation was not correlated to a shift in apparent relative molecular mass on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, suggesting that basal phosphorylation of ERK isoforms may be higher in parietal cells compared with actively proliferating cell lines. Also, in contrast to observations in neutrophils, the phosphatidylinositol 3-kinase (PtdIns 3-kinase) inhibitor, wortmannin (0.3-3 microM), failed to inhibit ERK activation in response to EGF, carbachol, or TPA. The combined data indicate that 1) EGF, TPA, and carbachol activate overlapping as well as distinct intracellular signaling pathways in gastric parietal cells, 2) EGF activates ERKs and enhances parietal cell acid secretory related functions via receptors with similar affinities, and 3) in contrast to some cell types, the parietal cell ERK-signaling cascade does not appear to be directly modulated by the PtdIns 3-kinase pathway or by elevated intracellular free Ca2+ or adenosine 3',5'-cyclic monophosphate concentrations.


Sign in / Sign up

Export Citation Format

Share Document