Reduced PDX-1 expression impairs islet response to insulin resistance and worsens glucose homeostasis

2005 ◽  
Vol 288 (4) ◽  
pp. E707-E714 ◽  
Author(s):  
Marcela Brissova ◽  
Michael Blaha ◽  
Cathi Spear ◽  
Wendell Nicholson ◽  
Aramandla Radhika ◽  
...  

In type 2 diabetes mellitus, insulin resistance and an inadequate pancreatic β-cell response to the demands of insulin resistance lead to impaired insulin secretion and hyperglycemia. Pancreatic duodenal homeodomain-1 (PDX-1), a transcription factor required for normal pancreatic development, also plays a key role in normal insulin secretion by islets. To investigate the role of PDX-1 in islet compensation for insulin resistance, we examined glucose disposal, insulin secretion, and islet cell mass in mice of four different genotypes: wild-type mice, mice with one PDX-1 allele inactivated (PDX-1+/−, resulting in impaired insulin secretion), mice with one GLUT4 allele inactivated (GLUT4+/−, resulting in insulin resistance), and mice heterozygous for both PDX-1 and GLUT4 (GLUT4+/−;PDX-1+/−). The combination of PDX-1 and GLUT4 heterozygosity markedly prolonged glucose clearance. GLUT4+/−;PDX-1+/− mice developed β-cell hyperplasia but failed to increase their β-cell insulin content. These results indicate that PDX-1 heterozygosity (∼60% of normal protein levels) abrogates the β-cell's compensatory response to insulin resistance, impairs glucose homeostasis, and may contribute to the pathogenesis of type 2 diabetes.

2007 ◽  
Vol 292 (6) ◽  
pp. E1694-E1701 ◽  
Author(s):  
Jane J. Kim ◽  
Yoshiaki Kido ◽  
Philipp E. Scherer ◽  
Morris F. White ◽  
Domenico Accili

Type 2 diabetes results from impaired insulin action and β-cell dysfunction. There are at least two components to β-cell dysfunction: impaired insulin secretion and decreased β-cell mass. To analyze how these two variables contribute to the progressive deterioration of metabolic control seen in diabetes, we asked whether mice with impaired β-cell growth due to Irs2 ablation would be able to mount a compensatory response in the background of insulin resistance caused by Insr haploinsufficiency. As previously reported, ∼70% of mice with combined Insr and Irs2 mutations developed diabetes as a consequence of markedly decreased β-cell mass. In the initial phases of the disease, we observed a robust increase in circulating insulin levels, even as β-cell mass gradually declined, indicating that replication-defective β-cells compensate for insulin resistance by increasing insulin secretion. These data provide further evidence for a heterogeneous β-cell response to insulin resistance, in which compensation can be temporarily achieved by increasing function when mass is limited. The eventual failure of compensatory insulin secretion suggests that a comprehensive treatment of β-cell dysfunction in type 2 diabetes should positively affect both aspects of β-cell physiology.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1516-P
Author(s):  
MASAHITO YOSHINARI ◽  
YOICHIRO HIRAKAWA ◽  
JUN HATA ◽  
MAYU HIGASHIOKA ◽  
TAKANORI HONDA ◽  
...  

Author(s):  
Froylan David Martínez-Sánchez ◽  
Valerie Paola Vargas-Abonce ◽  
Andrea Rocha-Haro ◽  
Romina Flores-Cardenas ◽  
Milagros Fernández-Barrio ◽  
...  

2016 ◽  
Vol 229 (3) ◽  
pp. 343-356 ◽  
Author(s):  
Kaiyuan Yang ◽  
Jonathan Gotzmann ◽  
Sharee Kuny ◽  
Hui Huang ◽  
Yves Sauvé ◽  
...  

We compared the evolution of insulin resistance, hyperglycemia, and pancreatic β-cell dysfunction in the Nile rat (Arvicanthis niloticus), a diurnal rodent model of spontaneous type 2 diabetes (T2D), when maintained on regular laboratory chow versus a high-fiber diet. Chow-fed Nile rats already displayed symptoms characteristic of insulin resistance at 2 months (increased fat/lean mass ratio and hyperinsulinemia). Hyperglycemia was first detected at 6 months, with increased incidence at 12 months. By this age, pancreatic islet structure was disrupted (increased α-cell area), insulin secretion was impaired (reduced insulin secretion and content) in isolated islets, insulin processing was compromised (accumulation of proinsulin and C-peptide inside islets), and endoplasmic reticulum (ER) chaperone protein ERp44 was upregulated in insulin-producing β-cells. By contrast, high-fiber-fed Nile rats had normoglycemia with compensatory increase in β-cell mass resulting in maintained pancreatic function. Fasting glucose levels were predicted by the α/β-cell ratios. Our results show that Nile rats fed chow recapitulate the five stages of progression of T2D as occurs in human disease, including insulin-resistant hyperglycemia and pancreatic islet β-cell dysfunction associated with ER stress. Modification of diet alone permits long-term β-cell compensation and prevents T2D.


2007 ◽  
Vol 66 (3) ◽  
pp. 451-457 ◽  
Author(s):  
D. B. Dunger ◽  
B. Salgin ◽  
K. K. Ong

Size at birth and patterns of postnatal weight gain have been associated with adult risk for the development of type 2 diabetes in many populations, but the putative pathophysiological link remains unknown. Studies of contemporary populations indicate that rapid infancy weight gain, which may follow fetal growth restriction, is an important risk factor for the development of childhood obesity and insulin resistance. Data from the Avon Longitudinal Study of Pregnancy and Childhood shows that rapid catch-up weight gain can lead to the development of insulin resistance, as early as 1 year of age, in association with increasing accumulation of central abdominal fat mass. In contrast, the disposition index, which reflects the β-cells ability to maintain insulin secretion in the face of increasing insulin resistance, is much more closely related to ponderal index at birth than postnatal catch-up weight gain. Infants with the lowest ponderal index at birth show a reduced disposition index at aged 8 years associated with increases in fasting NEFA levels. The disposition index is also closely related to childhood height gain and insulin-like growth factor-I (IGF-I) levels; reduced insulin secretory capacity being associated with reduced statural growth, and relatively short stature with reduced IGF-I levels at age 8 years. IGF-I may have an important role in the maintenance of β-cell mass, as demonstrated by recent studies of pancreatic β-cell IGF-I receptor knock-out and adult observational studies indicating that low IGF-I levels are predictive of subsequent risk for the development of type 2 diabetes. However, as insulin secretion is an important determinant of IGF-I levels, cause and effect may be difficult to establish. In conclusion, although rapid infancy weight gain and increasing rates of childhood obesity will increase the risk for the development of insulin resistance, prenatal and postnatal determinants of β-cell mass may ultimately be the most important determinants of an individual's ability to maintain insulin secretion in the face of increasing insulin resistance, and thus risk for the development of type 2 diabetes.


2020 ◽  
Vol 21 (5) ◽  
pp. 1770
Author(s):  
Nadia Rachdaoui

Insulin, a hormone produced by pancreatic β-cells, has a primary function of maintaining glucose homeostasis. Deficiencies in β-cell insulin secretion result in the development of type 1 and type 2 diabetes, metabolic disorders characterized by high levels of blood glucose. Type 2 diabetes mellitus (T2DM) is characterized by the presence of peripheral insulin resistance in tissues such as skeletal muscle, adipose tissue and liver and develops when β-cells fail to compensate for the peripheral insulin resistance. Insulin resistance triggers a rise in insulin demand and leads to β-cell compensation by increasing both β-cell mass and insulin secretion and leads to the development of hyperinsulinemia. In a vicious cycle, hyperinsulinemia exacerbates the metabolic dysregulations that lead to β-cell failure and the development of T2DM. Insulin and IGF-1 signaling pathways play critical roles in maintaining the differentiated phenotype of β-cells. The autocrine actions of secreted insulin on β-cells is still controversial; work by us and others has shown positive and negative actions by insulin on β-cells. We discuss findings that support the concept of an autocrine action of secreted insulin on β-cells. The hypothesis of whether, during the development of T2DM, secreted insulin initially acts as a friend and contributes to β-cell compensation and then, at a later stage, becomes a foe and contributes to β-cell decompensation will be discussed.


Sign in / Sign up

Export Citation Format

Share Document