scholarly journals Age disrupts androgen receptor-modulated negative feedback in the gonadal axis in healthy men

2010 ◽  
Vol 299 (4) ◽  
pp. E675-E682 ◽  
Author(s):  
Johannes D. Veldhuis ◽  
Paul Y. Takahashi ◽  
Daniel M. Keenan ◽  
Peter Y. Liu ◽  
Kristi L. Mielke ◽  
...  

Testosterone (T) exerts negative feedback on the hypothalamo-pituitary (GnRH-LH) unit, but the relative roles of the CNS and pituitary are not established. We postulated that relatively greater LH responses to flutamide (brain-permeant antiandrogen) than bicalutamide (brain-impermeant antiandrogen) should reflect greater feedback via CNS than pituitary/peripheral androgen receptor-dependent pathways. To this end, 24 healthy men ages 20–73 yr, BMI 21–32 kg/m2, participated in a prospective, placebo-controlled, randomized, double-blind crossover study of the effects of antiandrogen control of pulsatile, basal, and entropic (pattern regularity) measurements of LH secretion. Analysis of covariance revealed that flutamide but not bicalutamide 1) increased pulsatile LH secretion ( P = 0.003), 2) potentiated the age-related abbreviation of LH secretory bursts ( P = 0.025), 3) suppressed incremental GnRH-induced LH release ( P = 0.015), and 4) decreased the regularity of GnRH-stimulated LH release ( P = 0.012). Furthermore, the effect of flutamide exceeded that of bicalutamide in 1) raising mean LH ( P = 0.002) and T ( P = 0.017) concentrations, 2) accelerating LH pulse frequency ( P = 0.013), 3) amplifying total (basal plus pulsatile) LH ( P = 0.002) and T ( P < 0.001) secretion, 4) shortening LH secretory bursts ( P = 0.032), and 5) reducing LH secretory regularity ( P < 0.001). Both flutamide and bicalutamide elevated basal (nonpulsatile) LH secretion ( P < 0.001). These data suggest the hypothesis that topographically selective androgen receptor pathways mediate brain-predominant and pituitary-dependent feedback mechanisms in healthy men.

2006 ◽  
Vol 91 (10) ◽  
pp. 4077-4084 ◽  
Author(s):  
Peter Y. Liu ◽  
Paul Y. Takahashi ◽  
Pamela D. Roebuck ◽  
Johannes D. Veldhuis

Abstract Background: Healthy older men have reduced testosterone (Te) production and frequent, small irregular LH pulses. Which is cause and which is effect are not known. Rationale: In model systems, frequent and irregular LH pulses reflect attenuated feedback inhibition by Te. Hypothesis: Factors associated with aging impair negative feedback by Te. Subjects and Setting: Healthy men at an academic medical center were studied. Methods: The study used quantification of the regularity of LH release patterns during blockade of gonadal steroidogenesis and graded transdermal Te addback in 18 healthy men aged 18–65 yr. Results: In the cohort as a whole, stepwise Te repletion repressed LH concentrations (P = 0.001) and enhanced the quantifiable orderliness of LH release patterns (P &lt; 0.001). By regression analysis, age attenuated the capability of increasing Te concentrations to regularize LH secretion patterns (P = 0.019). However, after a fixed GnRH stimulus, the effect of Te on LH regularity was invariant of the age factor (P = 0.16), thus pointing to a hypothalamic locus of impaired Te feedback. Summary: Aging disrupts the capability of systemic Te concentrations to maintain orderly LH secretion under endogenous, but not exogenous, GnRH drive. Conclusions: Age or factors associated with increased age reduce negative feedback by any given total Te concentration on hypothalamopituitary GnRH-LH outflow, thus contributing to disorderly LH secretion.


2010 ◽  
pp. P2-461-P2-461
Author(s):  
JD Veldhuis ◽  
PY Takahashi ◽  
DM Keenan ◽  
PY Liu ◽  
KL Mielke ◽  
...  

Endocrinology ◽  
2013 ◽  
Vol 154 (11) ◽  
pp. 4249-4258 ◽  
Author(s):  
Casey C Nestor ◽  
Lique M. Coolen ◽  
Gail L. Nesselrod ◽  
Miro Valent ◽  
John M. Connors ◽  
...  

Orphanin FQ (OFQ), a member of the opioid family, is found in many areas of the hypothalamus and, when given centrally OFQ inhibits episodic LH secretion in rodents and sheep. Because GnRH neurons are devoid of the appropriate receptors to mediate steroid negative feedback directly, neurons that release OFQ may be involved. Using immunocytochemistry, we first determined that most OFQ neurons in the arcuate nucleus (ARC) and other hypothalamic regions of luteal phase ewes contained both estrogen receptor α and progesterone (P) receptor. Given a similar high degree of steroid receptor colocalization in other ARC subpopulations, we examined whether OFQ neurons of the ARC contained those other neuropeptides and neurotransmitters. OFQ did not colocalize with kisspeptin, tyrosine hydroxylase, or agouti-related peptide, but all ARC OFQ neurons coexpressed proopiomelanocortin. To test for a role for endogenous OFQ, we examined the effects of an OFQ receptor antagonist, [Nphe1,Arg14,Lys15]Nociceptin-NH2 (UFP-101) (30 nmol intracerebroventricular/h), on LH secretion in steroid-treated ewes in the breeding season and ovary-intact ewes in anestrus. Ovariectomized ewes with luteal phase concentrations of P and estradiol showed a significant increase in LH pulse frequency during infusion of UFP-101 (4.5 ± 0.5 pulses/6 h) compared with saline infusion (2.6 ± 0.4 pulses/6 h), whereas ewes implanted with only estradiol did not. Ovary-intact anestrous ewes displayed no significant differences in LH pulse amplitude or frequency during infusion of UFP-101. Therefore, we conclude that OFQ mediates, at least in part, the negative feedback action of P on GnRH/LH pulse frequency in sheep.


Endocrinology ◽  
2015 ◽  
Vol 156 (11) ◽  
pp. 4200-4213 ◽  
Author(s):  
Cleyde V. Helena ◽  
Natalia Toporikova ◽  
Bruna Kalil ◽  
Andrea M. Stathopoulos ◽  
Veronika V. Pogrebna ◽  
...  

Kisspeptin is the most potent stimulator of LH release. There are two kisspeptin neuronal populations in the rodent brain: in the anteroventral periventricular nucleus (AVPV) and in the arcuate nucleus. The arcuate neurons coexpress kisspeptin, neurokinin B, and dynorphin and are called KNDy neurons. Because estradiol increases kisspeptin expression in the AVPV whereas it inhibits KNDy neurons, AVPV and KNDy neurons have been postulated to mediate the positive and negative feedback effects of estradiol on LH secretion, respectively. Yet the role of KNDy neurons during the positive feedback is not clear. In this study, ovariectomized rats were microinjected bilaterally into the arcuate nucleus with a saporin-conjugated neurokinin B receptor agonist for targeted ablation of approximately 70% of KNDy neurons. In oil-treated animals, ablation of KNDy neurons impaired the rise in LH after ovariectomy and kisspeptin content in both populations. In estradiol-treated animals, KNDy ablation did not influence the negative feedback of steroids during the morning. Surprisingly, KNDy ablation increased the steroid-induced LH surges, accompanied by an increase of kisspeptin content in the AVPV. This increase seems to be due to lack of dynorphin input from KNDy neurons to the AVPV as the following: 1) microinjections of a dynorphin antagonist into the AVPV significantly increased the LH surge in estradiol-treated rats, similar to KNDy ablation, and 2) intra-AVPV microinjections of dynorphin in KNDy-ablated rats restored LH surge levels. Our results suggest that KNDy neurons provide inhibition to AVPV kisspeptin neurons through dynorphin and thus regulate the amplitude of the steroid-induced LH surges.


1983 ◽  
Vol 96 (2) ◽  
pp. 181-193 ◽  
Author(s):  
G. B. Martin ◽  
R. J. Scaramuzzi ◽  
J. D. Henstridge

The effects of oestradiol-17β, androstenedione, progesterone and time of the year on the pulsatile secretion of LH were tested in ovariectomized Merino ewes (n = 32). The steroids were administered by small subcutaneous implants, and the LH pulses were observed in samples taken at intervals of 15 min for 12 h in spring 1979, autumn 1980 and spring 1980, seasons corresponding to successive periods of anoestrus, breeding season and anoestrus. During spring, oestradiol alone was able to reduce the frequency of the LH pulses, while progesterone, either alone or in combination with oestradiol, had little effect. During autumn, on the other hand, neither oestradiol nor progesterone could significantly reduce the frequency of the pulses when administered independently, whereas the combined treatment was very effective. Androstenedione had no significant effect on pulse frequency at either time of the year, either alone or in any combination with oestradiol and progesterone. The basal levels of LH, over which the pulses are superimposed, were reduced by oestradiol alone in both seasons. Progesterone alone had no consistent effects, but interacted significantly with oestradiol and this combined treatment maintained low basal levels most effectively at all times. Androstenedione had no significant effect. The amplitude of the pulses increased throughout the course of the experiment. Within seasons, the amplitudes were significantly higher in the presence of oestradiol and progesterone, but were not significantly affected by androstenedione. It was concluded that certain of the ovarian steroids exert negative feedback on the tonic secretion of LH primarily by reducing the frequency of the pulses, and that the changes in LH secretion attributable to season and phases of the oestrous cycle can be accounted for entirely by the responses of the hypothalamus to oestradiol and progesterone. The role of the androstenedione secreted by the ovary in the ewe remains obscure.


1995 ◽  
Vol 145 (2) ◽  
pp. 271-282 ◽  
Author(s):  
I J Clarke

Abstract Experiments were performed to test the hypothesis that there is a negative feedback 'clamp' of ovarian hormones on the hypothalamus and pituitary gland during the follicular phase of the oestrous cycle that limits the secretion of GnRH and LH. GnRH secretion was monitored by sampling the hypophysial portal blood of ewes during the luteal phase of the oestrous cycle and either 24 h or 48 h after the induction of luteolysis by the injection of cloprostenol, a prostaglandin analogue. There was an increase in GnRH pulse frequency in the transition from the luteal to the follicular phase of the cycle. A reduction in the amplitude of GnRH pulses did not occur until 48 h after cloprostenol, suggestive of negative feedback at the level of the hypothalamus that is more profound in the latter part of the follicular phase. The responsivity of the pituitary gland to GnRH was monitored in ewes during the luteal phase of the oestrous cycle and 24 h or 48 h after cloprostenol. Injections of 250 ng or 1000 ng GnRH were given (i.v.) to ewes that had been anaesthetised to suppress endogenous secretion of GnRH and LH. Using the lower dose, the responses 48 h after cloprostenol were not significantly different from those in the luteal phase. With the higher dose of GnRH, a significant (P<0·05) increase in mean responsivity was seen 48 h after cloprostenol. There was, however, a marked variation in response, with some ewes showing profound increases in LH secretion in response to GnRH and others showing responses that were similar to those obtained during the luteal phase of the cycle. These data are interpreted to mean that the secretion of LH is 'clamped' during the follicular phase of the oestrous cycle and the 'clamp' is only released near the time of the preovulatory LH surge. To test whether or not a rise in GnRH input to the pituitary gland could over-ride the 'clamp' on the pituitary secretion of LH in the late follicular phase of the cycle, sheep were treated 40 h after cloprostenol with either a bolus injection of 500 ng GnRH or four pulses of 125 ng GnRH given at 10-min intervals. These treatments caused small elevations in LH secretion but did not always cause preovulatory LH surges. In some cases, a small rise in LH secretion was induced by GnRH treatments and levels of LH in plasma returned to baseline with the preovulatory LH surge occurring a few hours later. In one clear case, a bolus injection of GnRH induced an LH surge. The overall data from the GnRH-treated groups, however, indicated a significant delay in the onset of the LH surge which may have been due to perturbation of the subcellular mechanisms in the gonadotrophs. These data were interpreted to mean that the secretion of LH from the pituitary gland is inhibited up to very soon before the onset of the LH surge. The inhibitory factor could be oestrogen but could also be some other pituitary feedback hormone such as gonadotrophin surge-attenuating factor. It is concluded that the increase in the secretion of GnRH at the time of the onset of the LH surge is closely linked to an increase in the responsivity of the gonadotrophs to GnRH. The latter is not caused by the increase in the secretion of GnRH. Journal of Endocrinology (1995) 145, 271–282


Endocrinology ◽  
2009 ◽  
Vol 150 (9) ◽  
pp. 4213-4220 ◽  
Author(s):  
Javed Iqbal ◽  
Olivier Latchoumanin ◽  
Ika P. Sari ◽  
Richard J. Lang ◽  
Harold A. Coleman ◽  
...  

Abstract In pituitary gonadotropes, estrogens have biphasic actions to cause an initial negative feedback followed by a positive feedback on LH secretion, but the mechanisms involved are not clearly understood. To investigate the feedback effects of estrogen, we used mixed ovine pituitary cell cultures (48–72 h), which were treated with 10−9m estradiol-17β (E2) or vehicle followed by a pulse of 10−9m GnRH. Medium was collected for LH assay and cells extracted to determine activation of MAPK (phosphorylated ERK-1/2). E2 treatment for 5 min reduced GnRH-induced LH release and caused phosphorylation of ERK-1/2. E2 alone also caused phosphorylation of ERK-1/2, similar to the response evoked by GnRH alone. GnRH increased cytoplasmic intracellular free calcium concentration ([Ca2+]i) and this was abolished by 2 min pretreatment with E2 or E-bovine serum albumen conjugate. Blockade of Ca2+ channels with nifedipine had no effect on the initial peak of GnRH-induced increase in [Ca2+]i but reduced its duration by 27 ± 6%. Depletion of intracellular Ca2+ stores with thapsigargin prevented GnRH-induced increase in [Ca2+]i. Thapsigargin (10−7m) or nifedipine (10−5m) pretreatment (15 min) of cells lowered GnRH-induced LH secretion by 30 ± 6 and 50% ± 4%, respectively. We conclude that inhibition of the GnRH-induced increase in [Ca2+]i in gonadotropes by E2 is a likely mechanism for the negative feedback effect of E2 on LH secretion involving a rapid nongenomic effect of E2. Activation of the MAPK pathway by E2 may be the mechanism for the time-delayed positive feedback effect on LH secretion at the level of the gonadotrope.


1999 ◽  
Vol 163 (2) ◽  
pp. 243-254 ◽  
Author(s):  
F Bertrand ◽  
J Thiery ◽  
S Picard ◽  
B Malpaux

In ewes, photoperiod modulates LH release and dopaminergic terminals in the median eminence (ME) have a critical role in the establishment of long-day inhibition of LH secretion. This study was undertaken to determine the type of dopaminergic receptors, D1-like or D2-like, that mediate the action of dopamine on LH secretion at the ME level in this situation. This was assessed, in ovariectomized and estradiol-treated ewes, with the use of reverse microdialysis in the ME in three experiments: first, when LH secretion was stimulated by short days, by determining the response to three doses (0.01, 0.1 or 1 mg/ml) of a D1-like (SKF38393) and a D2-like (quinpirole) agonist; secondly, during early long-day inhibition of LH secretion, by determining the ability of SKF38393 and quinpirole (1 mg/ml) to mimic the inhibitory effects of dopamine, after a blockade of its synthesis with alpha-methyl-para-tyrosine (alphaMPT; 2 mg/ml); and thirdly, during early long-day inhibition of LH secretion, by determining the response to three doses (0.009, 0.09 or 0.9 mg/ml) of a D1-like (SCH23390) and a D2-like (sulpiride) antagonist. In none of the conditions was effect of the D1-like analogs on LH secretion found, compared with the control treatments. In contrast, the D2-like analogs caused changes in LH secretion. First, with short days, quinpirole in the highest dose significantly reduced mean LH concentration (P<0.05) and LH pulse frequency (P<0.01). Secondly, with long days, addition of quinpirole to alphaMPT caused a significant decrease in LH secretion relative to alphaMPT alone (P<0.05). Thirdly, with long days, sulpiride at the highest dose significantly increased mean LH concentration (during the first 3 h of treatment, P<0.05) and LH pulse frequency (P<0.05). Prolactin secretion was also determined in these experiments, and D2-like agonist and antagonist caused an inhibition and a stimulation of prolactin secretion, respectively. These results demonstrate that, in the ME, inhibitory action of dopamine on LH secretion, critical for the initiation of long-day-induced inhibition, is mediated by D2-like, not D1-like, dopaminergic receptors.


1986 ◽  
Vol 111 (1) ◽  
pp. 67-73 ◽  
Author(s):  
M. J. D'Occhio ◽  
D. R. Gifford ◽  
T. Weatherly ◽  
B. P. Setchell

ABSTRACT To ascertain whether temporal changes in activity of the hypothalamo-pituitary axis in prepubertal bulls may occur independently of shifts in sensitivity to steroid feedback, the acute post-castration rise in serum gonadotrophins was monitored in bull calves castrated at monthly intervals from 4 to 9 months of age. Since a major feature of the gonadotrophin profiles of developing bulls is a change in LH pulse frequency early in life, pulsatile LH secretion after castration was used as an index of activity of the central LH-releasing hormone (LHRH) pulse generator. Relative to the day of castration (day 0) bull calves (n = 4) were bled at 20-min intervals for 8 h on day −3 and at 10-min intervals for 4 h on days 3, 5 and 7. During the first week after castration, 4-month-old bulls showed a higher (P<0·05) frequency of LH pulses compared with bulls at 8 and 9 months (1·13, 0·88 and 0·75 pulses/h respectively; pooled s.e.m.= 0·13). Mean LH levels before castration were higher (P<0·05) in 4-month-old bulls than in bulls at 7, 8 and 9 months (0·92, 0·37, 0·31, 0·38 μg/l respectively; pooled s.e.m. = 0·12). After castration mean LH levels did not differ with age. Mean FSH levels did not differ among age groups either before or after castration. Increased serum LH levels in 4-month-old bulls confirmed the transient rise in LH secretion that occurs at this time in developing bull calves. Age-related differences in LH pulse frequency observed after castration suggested that in prepubertal bulls changes in activity of the central LHRH pulse generator can occur independently of steroid feedback mechanisms. J. Endocr. (1986) 111, 67–73


Sign in / Sign up

Export Citation Format

Share Document