scholarly journals Estradiol-17β Inhibits Gonadotropin-Releasing Hormone-Induced Ca2+ in Gonadotropes to Regulate Negative Feedback on Luteinizing Hormone Release

Endocrinology ◽  
2009 ◽  
Vol 150 (9) ◽  
pp. 4213-4220 ◽  
Author(s):  
Javed Iqbal ◽  
Olivier Latchoumanin ◽  
Ika P. Sari ◽  
Richard J. Lang ◽  
Harold A. Coleman ◽  
...  

Abstract In pituitary gonadotropes, estrogens have biphasic actions to cause an initial negative feedback followed by a positive feedback on LH secretion, but the mechanisms involved are not clearly understood. To investigate the feedback effects of estrogen, we used mixed ovine pituitary cell cultures (48–72 h), which were treated with 10−9m estradiol-17β (E2) or vehicle followed by a pulse of 10−9m GnRH. Medium was collected for LH assay and cells extracted to determine activation of MAPK (phosphorylated ERK-1/2). E2 treatment for 5 min reduced GnRH-induced LH release and caused phosphorylation of ERK-1/2. E2 alone also caused phosphorylation of ERK-1/2, similar to the response evoked by GnRH alone. GnRH increased cytoplasmic intracellular free calcium concentration ([Ca2+]i) and this was abolished by 2 min pretreatment with E2 or E-bovine serum albumen conjugate. Blockade of Ca2+ channels with nifedipine had no effect on the initial peak of GnRH-induced increase in [Ca2+]i but reduced its duration by 27 ± 6%. Depletion of intracellular Ca2+ stores with thapsigargin prevented GnRH-induced increase in [Ca2+]i. Thapsigargin (10−7m) or nifedipine (10−5m) pretreatment (15 min) of cells lowered GnRH-induced LH secretion by 30 ± 6 and 50% ± 4%, respectively. We conclude that inhibition of the GnRH-induced increase in [Ca2+]i in gonadotropes by E2 is a likely mechanism for the negative feedback effect of E2 on LH secretion involving a rapid nongenomic effect of E2. Activation of the MAPK pathway by E2 may be the mechanism for the time-delayed positive feedback effect on LH secretion at the level of the gonadotrope.

1970 ◽  
Vol 46 (1) ◽  
pp. 1-7 ◽  
Author(s):  
S. TALEISNIK ◽  
M. E. VELASCO ◽  
J. J. ASTRADA

SUMMARY The influence that the interruption of the neural afferents to the hypothalamus exerts on ovulation and on the release of luteinizing hormone (LH) was studied in the rat. Animals with retrochiasmatic sections interrupting the neural connexions between the medial hypothalamus and the preoptic area (POA) showed constant oestrus and failed to ovulate. Animals in which the dorsal neural afferents to the POA were transected had oestrous cycles and ovulated normally. The positive feedback effect of progesterone on LH release in spayed animals primed either with 20 μg. oestradiol benzoate or 2·5 mg. testosterone propionate 3 days before was studied. Transection of the dorsal afferents to the POA favoured an increase in plasma LH, but in animals with retrochiasmatic sections the response was abolished. However, the negative feedback effect of ovarian steroids operated after both types of transection because an increase in plasma LH occurred after ovariectomy. It is concluded that the negative feedback effect of ovarian steroids acts on the medial hypothalamus which can maintain a tonic release of gonadotrophins in the absence of steroids. In contrast, the POA involved in the positive feedback effect of progesterone is concerned with the phasic release of LH.


1987 ◽  
Vol 115 (1) ◽  
pp. 16-20
Author(s):  
María R. Faigón ◽  
Berta Szwarcfarb ◽  
Pablo Scacchi ◽  
Jaime A. Moguilevsky

Abstract. The purpose of this study was to examine the role of opiate peptides in the development of the positive feedback effect of ovarian hormones (Oe-P) on the LH secretion that matures in female rats at about the age of 20–22 days. Oe-P administration at the age of 14 days induced a significant decrease of LH levels. A single injection of naloxone (5 mg/kg) induced a significant release of LH. This release was completely blocked by Oe-P administration. At the age of 20 days, Oe-P did not induce any significant change of LH levels, whereas naloxone increased the serum LH concentration. On the other hand, injection of Oe-P into naloxone-treated rats induced a significant rise in LH that was significantly higher than that observed with naloxone alone (P <0.025). Oe-P administration induced a positive feedback effect on LH at the age of 25 days. At this age, naloxone also increased LH levels and a significant potentiation of the LH release in response to Oe-P was observed in a group treated with naloxone. These results indicate that naloxone advances the development of the positive feedback mechanism of ovarian hormones on LH secretion and potentiates this mechanism after its maturation. On this basis it is proposed that the probable inhibitory effect of opiates on the onset of the positive feedback mechanism is related to the well-known participation of the opiate system in the onset of puberty. The LH release in response to naloxone significantly decreased from day 14 to day 25 and this could represent a decrease in the inhibitory effect of opiate peptides on LH secretion, probably connected with the onset of the postive feedback mechanism.


Endocrinology ◽  
1999 ◽  
Vol 140 (1) ◽  
pp. 165-170 ◽  
Author(s):  
Alain Caraty ◽  
Donal C. Skinner

Abstract The luteal phase elevation in circulating progesterone (P) powerfully inhibits GnRH and, consequently, LH release, thereby preventing premature preovulatory LH surges in the ewe. Whether luteal phase P modulates the response of the GnRH system to the positive feedback effect of estradiol is unknown. To investigate this possibility, two experiments were conducted during the anestrous season using an artificial model of the follicular phase in ovariectomized ewes bearing 10-mm sc 17β-estradiol SILASTIC brand implants (Dow Corning Corp.). In Exp 1, ewes (n = 10) were run through four successive artificial cycles during which a luteal phase level of P was either replaced (cycles 1 and 3) or not replaced (cycles 2 and 4). GnRH and LH secretions were monitored by sampling cerebrospinal fluid (CSF) and jugular blood from 10–35 h after four 30-mm 17β-estradiol SILASTIC implants were inserted sc. CSF could be collected from only four ewes over the four cycles. There was no P-dependent difference in the onset of the GnRH and LH surges, which may have been due to a progressive delay in the surge onsets over the four cycles (by ANOVA, P &lt; 0.05). Due to this delay, it was not possible to obtain an accurate estimate of the duration of the GnRH and LH surges in all ewes, but the size of the GnRH surge was always greater when animals had been treated with P, resulting in a significant increase in the maximum (P &lt; 0.01) and mean (P &lt; 0.05) levels during the surge. In contrast, there was no effect on any parameter of LH secretion. In Exp 2, ewes (n = 10) were run through two artificial estrous cycles during which luteal phase P was either replaced or not replaced, using a cross-over experimental design. CSF was collected from seven ewes over the two cycles. GnRH and LH secretions were monitored from 10–53 h after estradiol administration. As in Exp 1, a clear significant increase in the maximal and mean GnRH levels (P &lt; 0.05 for both) was observed during the surge when ewes had been pretreated with P. Again, no changes were observed in LH release during the surge. P priming did, however, delay the onsets of the GnRH (P &lt; 0.01) and LH surges (P &lt; 0.01). Our data show that the increase in P during the luteal phase of the estrous cycle is essential for the full expression of the positive feedback effect of estradiol in inducing the preovulatory GnRH surge in the ewe.


2000 ◽  
Vol 278 (6) ◽  
pp. H2008-H2019 ◽  
Author(s):  
Anna Babinska ◽  
Michael V. Hogan ◽  
Tomasz Sobocki ◽  
Malgorzata B. Sobocka ◽  
Yigal H. Ehrlich ◽  
...  

Human platelets express a protein phosphorylation system on their surface. A specific protein kinase C (PKC) antibody, monoclonal antibody (MAb) 1.9, which binds to the catalytic domain of PKC and inhibits its activity, causes the aggregation of intact platelets while inhibiting the phosphorylation of platelet surface proteins. Photoaffinity labeling with 100 nM 8-azido-[α32P]ATP identified this ecto-PKC as a single surface protein of 43 kDa sensitive to proteolysis by extracellular 0.0005% trypsin. Inhibition of the binding of 8-azido-[α32P]ATP to the 43-kDa surface protein by MAb 1.9 identified this site as the active domain of ecto-PKC. Covalent binding of the azido-ATP molecule to the 43-kDa surface protein inhibited the phosphorylative activity of the platelet ecto-PKC. Furthermore, PKC pseudosubstrate inhibitory peptides directly induced the aggregation of platelets and inhibited azido-ATP binding to the 43-kDa protein. Platelet aggregation induced by MAb 1.9 and by PKC inhibitory peptides required the presence of fibrinogen and resulted in an increase in the level of intracellular free calcium concentration. This increase in intracellular free calcium concentration induced by MAb 1.9 was found to be dependent on the binding of fibrinogen to activated GPIIb/IIIa integrins, suggesting that MAb 1.9 causes Ca2+flux through the fibrinogen receptor complex. We conclude that a decrease in the state of phosphorylation of platelet surface proteins caused by inhibition of ecto-PKC results in membrane rearrangements that can induce the activation of latent fibrinogen receptors, leading to platelet aggregation. Accordingly, the maintenance of a physiological steady state of phosphorylation of proteins on the platelet surface by ecto-PKC activity appears to be one of the homeostatic mechanisms that maintain fibrinogen receptors of circulating platelets in a latent state that cannot bind fibrinogen.


2010 ◽  
Vol 299 (4) ◽  
pp. E675-E682 ◽  
Author(s):  
Johannes D. Veldhuis ◽  
Paul Y. Takahashi ◽  
Daniel M. Keenan ◽  
Peter Y. Liu ◽  
Kristi L. Mielke ◽  
...  

Testosterone (T) exerts negative feedback on the hypothalamo-pituitary (GnRH-LH) unit, but the relative roles of the CNS and pituitary are not established. We postulated that relatively greater LH responses to flutamide (brain-permeant antiandrogen) than bicalutamide (brain-impermeant antiandrogen) should reflect greater feedback via CNS than pituitary/peripheral androgen receptor-dependent pathways. To this end, 24 healthy men ages 20–73 yr, BMI 21–32 kg/m2, participated in a prospective, placebo-controlled, randomized, double-blind crossover study of the effects of antiandrogen control of pulsatile, basal, and entropic (pattern regularity) measurements of LH secretion. Analysis of covariance revealed that flutamide but not bicalutamide 1) increased pulsatile LH secretion ( P = 0.003), 2) potentiated the age-related abbreviation of LH secretory bursts ( P = 0.025), 3) suppressed incremental GnRH-induced LH release ( P = 0.015), and 4) decreased the regularity of GnRH-stimulated LH release ( P = 0.012). Furthermore, the effect of flutamide exceeded that of bicalutamide in 1) raising mean LH ( P = 0.002) and T ( P = 0.017) concentrations, 2) accelerating LH pulse frequency ( P = 0.013), 3) amplifying total (basal plus pulsatile) LH ( P = 0.002) and T ( P < 0.001) secretion, 4) shortening LH secretory bursts ( P = 0.032), and 5) reducing LH secretory regularity ( P < 0.001). Both flutamide and bicalutamide elevated basal (nonpulsatile) LH secretion ( P < 0.001). These data suggest the hypothesis that topographically selective androgen receptor pathways mediate brain-predominant and pituitary-dependent feedback mechanisms in healthy men.


1971 ◽  
Vol 51 (1) ◽  
pp. 31-39 ◽  
Author(s):  
R. E. PETER

SUMMARY The effect on thyroid activity of a systemically ineffective dose of thyroxine (T4) implanted in the hypothalamus or pituitary of goldfish was tested. Thyroid activity was decreased by T4 implantation in either location, indicating that T4 has a negative feedback effect on the pituitary causing a decrease in thyrotrophin secretion, and a positive feedback effect on the hypothalamus stimulating the secretion of thyrotrophin inhibitory factor (TIF). Fish with a T4 or blank-control implant in the pituitary that had a damaged pituitary stalk, as a result of the operative procedures, were hyperthyroid, suggesting either that TIF is more effective in suppressing thyrotroph activity than T4 and that the effect of T4 was masked by the absence of TIF, or, less likely, that T4 negative feedback in the pituitary is not effective independent of TIF. The results were compared with the information about T4 feedback in mammals.


1984 ◽  
Author(s):  
◽  
Benjamin Adler

These studies tested the interrelated hypotheses that the ovarian hormones produce their positive feedback effects on luteinizing hormone (LH) secretion through activation of noradrenergic and adrenergic systems in specific hypothalamic regions. Furthermore, the ovarian hormones may alter the activity of opioid neuropeptide and Gamma-Aminobutyric Acid (GABA) systems to produce these alterations in catecholamine transmission and gonadotropin secretion. Radioimmunoassays were utilized to determine plasma LH and median eminence LHRH, and hypothalamic catecholamine concentrations were measured by radioenzymatic assay. The first two studies tested whether epinephrine (EPI) synthesis inhibition blocks the accumulation of median eminence LHRH that precedes the ovarian hormone-induced LH surge and also to test whether the stimulatory ovarian hormone regimen enhances the activity of hypothalamic EPI systems. Ovariectomized rats were primed with estradiol (EB), followed 2 days later by progesterone (Prog.). Animals were treated before Prog, administration with saline, one of the EPI synthesis inhibitors SKF 64139 or LY 78335, or the norepinephrine (NE) synthesis inhibitor, FLA-63. The catecholamine synthesis inhibitors blocked or delayed the LH surge. FLA-63 completely prevented the accumulation of LHRH in the median eminence that preceded the rise in LH release. However, selective reduction in EPI levels with SKF 64139 only partially prevented this increase in LHRH. A second EPI synthesis inhibitor, LY 78335, delayed both the LH surge and the rise in LHRH. In a second experiment, the administration of EB plus Prog, to ovariectomized rats increased the alpha-methyltyrosine (aMT) induced depletion of EPI in the medial basal hypothalamus (MBH). The depletion of NE after synthesis inhibition was enhanced in both the MBH and preoptic-anterior hypothalamus (POA). Experiments 3 and 4 examined a possible mechanism underlying these ovarian hormone effects on LH release and catecholamine activity. These studies tested whether the opiate antagonist, naloxone, which increases LH release, enhances the activity of NE and EPI neurons in the hypothalamus, and also tested whether morphine, an opiate agonist which decreases LH release, depresses the activity of hypothalamic NE and EPI activity. Administration of naloxone to EB-primed rats increased LH release and potentiated the depletion of NE in the POA and MBH, and enhanced the decline of EPI and dopamine (DA) in the MBH, suggesting increased catecholamine activity in these regions. Administration of the opiate agonist, morphine, to rats pretreated with EB and Prog., decreased LH and decreased the depletion of the catecholamines in the POA and MBH, suggesting reduced activity. In most cases, naloxone antagonized the inhibitory effect of morphine. Experiments 3, 6, and 7 examined the involvement of (GABA) systems in the positive feedback effects of EB and Prog, on LHRH and LH release. These studies tested 1) the effects of GABAergic drugs on the LH surge induced by EB and Prog., 2) whether GABA agonists reduce NE and EPI activity in the hypothalamus, and 3) whether a GABA agonist prevents the accumulation of median eminence LHRH induced by EB and Prog. Ovariectomized rats received the stimulatory EB plus Prog, treatment. Simultaneously with Prog., rats received either saline, the barbiturate, phenobarbital, the GABAg agonist, baclofen, the GABA^ agonist, muscimol, or either the GABA^ antagonist, bicuculline, or the putative GABAg antagonist, 5-aminovalerate. Additional experiments tested the effects of the GABA drugs on LH release in ovariectomized, hormonally untreated rats and in response to exogenous LHRH. The LH surge induced by EB+Prog. was blocked by treatment with either baclofen, muscimol, or phenobarbital. Bicuculline was ineffective in preventing the effect of baclofen and phonobarbital but partially prevented the effect of muscimol. Neither baclofen nor muscimol significantly affected LH release in hormonally untreated, ovariectomized rats or in rats receiving LHRH administration. In the results of Experiment 6, in EB plus Prog.-treated rats, baclofen and muscimol significantly reduced the concentrations of EPI and NE in the POA and MBH and prevented their decline after administration of otMT, suggesting decreased catecholamine transmission. In Experiment 7, rats were primed with the ovarian hormones and received, concurrently with Prog., either saline, or baclofen. The GABAg agonist, baclofen, blocked the LH surge and selectively increased LHRH concentrations. Experiment 8 tested 1) whether baclofen reverses the enhancement of LH release and catecholamine activity produced by naloxone, and 2) whether the opiate antagonist, nalmefene, prevents the blockade of the LH surge produced by baclofen. In the first study of Experiment 8, naloxone increased LH release and enhanced catecholamine activity in EB-primed rats. Baclofen was unable to reverse these effects. In the second study, baclofen administration to EB plus P treated rats blocked the LH surge and concomitant administration of nalmefene was unable to prevent this effect of baclofen. These results suggest that: 1) the ovarian hormones activate both NE and EPI systems to stimulate the early afternoon rise of LHRH in the median eminence and to induce the subsequent LH surge, 2) the ovarian hormones may produce their positive feedback effects on LH secretion by removing an inhibitory GABA or opioid neuropeptide influence on catecholamine transmission, allowing NE and EPI to stimulate LHRH, and subsequently, LH release, and 3) these modulatory actions of GABA and opiates may represent effects of two parallel, yet independent hypothalamic systems which regulate catecholamine neurotransmission and subsequently LH secretion.


1990 ◽  
Vol 258 (1) ◽  
pp. H9-H16 ◽  
Author(s):  
Y. Koretsune ◽  
E. Marban

When coronary perfusion is interrupted, the diastolic force generated by the myocardium first falls but eventually increases. The delayed rise in force, ischemic contracture, has been attributed either to ATP depletion or to elevation of the intracellular free calcium concentration ([Ca2+]i). To distinguish between these possibilities, we measured [Ca2+]i and ATP concentration [( ATP]) in ferret hearts using nuclear magnetic resonance (NMR) spectroscopy. Mean time-average [Ca2+]i and [ATP] equaled 0.25 microM and 2.7 mumol/g wet wt, respectively, under control perfusion conditions. [Ca2+]i increased and [ATP] fell during total global ischemia. Although [Ca2+]i exceeded the usual systolic levels of 1.7 microM within 20-25 min of ischemia and reached a steady level between 2 and 3 microM by 30-35 min, force only began to rise after 40 min. In contrast, the time required for [ATP] to fall to less than 10% of control levels coincided closely with the onset of contracture. Ischemia in the presence of iodoacetate, an inhibitor of glycolysis, led to a precipitous fall in [ATP] and a concomitant rise in force, both of which preceded any elevation of [Ca2+]i. Thus changes in [Ca2+]i are neither sufficient nor necessary for the initiation of ischemic contracture. We conclude that ATP depletion is primary and that the rise in resting force reflects the formation of rigor cross bridges.


1991 ◽  
Vol 261 (4) ◽  
pp. F720-F725 ◽  
Author(s):  
M. Naruse ◽  
S. Uchida ◽  
E. Ogata ◽  
K. Kurokawa

Effects of endothelin 1 (ET-1) on intracellular free calcium concentration ([Ca2+]i) were examined in superfused single-nephron segments dissected from mouse kidney. ET-1, 10(-9) to 10(-6) M, caused a biphasic increase in [Ca2+]i consisting of an initial rapid rise followed by a second more sustained elevation in [Ca2+]i in cortical collecting tubules (CCT), outer medullary CT (OMCT), and inner medullary CT (IMCT). The magnitude of the response was dose dependent and was greater in CCT than in OMCT or IMCT. Additional studies using CCT revealed that Ca2+ removal from the superfusate resulted in attenuation of the second phase of [Ca2+]i with approximately 50% reduction in the height of the initial [Ca2+]i peak in response to 10(-6) M ET-1. Ca2+ channel blocker nicardipine had little effect on ET-1-evoked changes in [Ca2+]i. BAY K 8644 and high superfusate K+ also did not affect [Ca2+]i. Addition of ET-1 and arginine vasopressin (AVP), 10(-6) M each, showed the presence of homologous desensitization but the absence of heterologous desensitization in [Ca2+]i changes. There was no additive effect of ET-1 and AVP on [Ca2+]i when they were added together. These data show that ET-1 evokes a biphasic increase in [Ca2+]i of collecting tubules and suggest that the initial peak of the ET-1-evoked rise in [Ca2+]i is largely due to cell Ca2+ release and that the second sustained rise in [Ca2+]i is largely due to increased Ca2+ influx. Data also suggest that ET-1 and AVP may act in the collecting tubules through different receptors.


Sign in / Sign up

Export Citation Format

Share Document