ATP utilization and provision in fast-twitch skeletal muscle during tetanic contractions

1989 ◽  
Vol 257 (4) ◽  
pp. E595-E605 ◽  
Author(s):  
L. L. Spriet

Rat fast-twitch muscles were tetanically stimulated in situ with an occluded circulation to examine ATP utilization and provision during isometric tension production. Plantaris (PL) and gastrocnemius (G) muscles were stimulated for 60 s in four conditions: A) 1.0-Hz train rate, 200-ms train duration at 80 Hz, B) 1.0 Hz (100 ms, 80 Hz), C) 0.5 Hz (100 ms, 80 Hz), and D) 1.0 Hz (200 ms, 40 Hz). Muscles were sampled pre- and post-stimulation for pH, high-energy phosphates, and glycolytic intermediates. Contributions to total ATP utilization (all muscles and conditions) were 64-67% glycolysis, 24-28% phosphocreatine, and 8-9% endogenous ATP. Glycogenolysis and glycolysis were greatest in white G (WG), 40% lower in red G (RG), and intermediate in PL muscles. Average energy costs in conditions A and D were approximately 0.60 mumol ATP/(N.s). Decreasing the train duration to 100 ms in B and the number of tetani to 30 in C increased energy costs to 0.93 +/- 0.05 and 1.26 +/- 0.07 mumol ATP/(N.s). Despite a lower pH, WG glycogenolytic (phosphorylase) activity was constant during condition A, whereas RG activity decreased in the final 30 contractions. Larger accumulations of Pi and inosine monophosphate may account for the maintained phosphorylase activity. Glycolytic (phosphofructokinase, PFK) activity was highest in WG and associated with higher fructose 6-phosphate concentration, greater depletion of ATP and, in later contractions, a higher NH4+ concentration. During tetanic in situ stimulation of fast-twitch muscle, the H+ profiles of phosphorylase and PFK are extended beyond in vitro predictions via the accumulation of positive modulators. This permits significant anaerobic ATP production via the glycolytic pathway despite increasing [H+]. The findings also suggest that lengthening the duration of tetani, generating lower peak tensions, and prolonging relaxation time all contribute to lower energy costs in fast-twitch muscle.

2001 ◽  
Vol 280 (2) ◽  
pp. H830-H834 ◽  
Author(s):  
Michael A. Portman ◽  
Anthony L. Panos ◽  
Yun Xiao ◽  
David L. Anderson ◽  
Xue-Han Ning

The specific Na+/H+ exchange inhibitor HOE-642 prevents ischemic and reperfusion injury in the myocardium. Although this inhibitor alters H+ ion flux during reperfusion in vitro, this action has not been confirmed during complex conditions in situ. Myocardial intracellular pH (pHi) and high-energy phosphates were monitored using 31P magnetic resonance spectroscopy in open-chest pigs supported by cardiopulmonary bypass during 10 min of ischemia and reperfusion. Intravenous HOE-642 (2 mg/kg; n = 8) administered before ischemia prevented the increases in diastolic stiffness noted in control pigs ( n = 8), although it did not alter the postischemic peak-elastance or pressure-rate product measured using a distensible balloon within the left ventricle. HOE-642 induced no change in pHi during ischemia but caused significant delays in intracellular realkalinization during reperfusion. HOE-642 did not alter phosphocreatine depletion and repletion but did improve ATP preservation. Na+/H+ exchange inhibition through HOE-642 delays intracellular alkalinization in the myocardium in situ during reperfusion in association with improved diastolic function and high-energy phosphate preservation.


1998 ◽  
Vol 274 (2) ◽  
pp. C465-C471 ◽  
Author(s):  
James W. E. Rush ◽  
Peter C. Tullson ◽  
Ronald L. Terjung

We examined a possible mechanism to account for the maintenance of peak AMP deamination rate in fast-twitch muscle of rats fed the creatine analog β-guanidinopropionic acid (β-GPA), in spite of reduced abundance of the enzyme AMP deaminase (AMPD). AMPD enzymatic capacity (determined at saturating AMP concentration) and AMPD protein abundance (Western blot) were coordinately reduced ∼80% in fast-twitch white gastrocnemius muscle by β-GPA feeding over 7 wk. Kinetic analysis of AMPD in the soluble cell fraction demonstrated a single Michaelis-Menten constant ( K m; ∼1.5 mM) in control muscle extracts. An additional high-affinity K m (∼0.03 mM) was revealed at low AMP concentrations in extracts of β-GPA-treated muscle. The kinetic alteration in AMPD reflects increased molecular activity at low AMP concentrations; this could account for high rates of deamination in β-GPA-treated muscle in situ, despite the loss of AMPD enzyme protein. The elimination of this kinetic effect by treatment of β-GPA-treated muscle extracts with acid phosphatase in vitro suggests that phosphorylation is involved in the kinetic control of skeletal muscle AMPD in vivo.


1991 ◽  
Vol 70 (4) ◽  
pp. 1787-1795 ◽  
Author(s):  
C. B. Campbell ◽  
D. R. Marsh ◽  
L. L. Spriet

The effect of age on skeletal muscle anaerobic energy metabolism was investigated in adult (11 mo) and aged (25 mo) Fischer 344 rats. Hindlimb skeletal muscles innervated by the sciatic nerve were stimulated to contract with trains of supramaximal impulses (100 ms, 80 Hz) at a train rate of 1 Hz for 60 s, with an occluded circulation. Soleus, plantaris, and red and white gastrocnemius (WG) were sampled from control and stimulated limbs. All muscle masses were reduced with age (9-13%). Peak isometric tensions, normalized per gram of wet muscle, were lower throughout the stimulation in the aged animals (28%). The potential for anaerobic ATP provision was unaltered with age in all muscles, because resting high-energy phosphates and glycogen contents were similar to adult values. Anaerobic ATP provision during stimulation was unaltered by aging in soleus, plantaris, and red gastrocnemius muscles. In the WG, containing mainly fast glycolytic (FG) fibers, ATP and phosphocreatine contents were depleted less in aged muscle. In situ glycogenolysis and glycolysis were 90.0 +/- 4.8 and 69.3 +/- 2.6 mumol/g dry muscle (dm) in adult WG and reduced to 62.3 +/- 6.9 and 51.5 +/- 5.5 mumol/g dm, respectively, in aged WG. Consequently, total anaerobic ATP provision was lower in aged WG (224.5 +/- 20.9 mumol/g dm) vs. adult (292.6 +/- 7.6 mumol/g dm) WG muscle. In summary, the decreased tetanic tension production in aged animals was associated with a decreased anaerobic energy production in FG fibers. Reduced high-energy phosphate use and a greater energy charge potential after stimulation suggested that the energy demand was reduced in aged FG fibers.(ABSTRACT TRUNCATED AT 250 WORDS)


2000 ◽  
Vol 4 (1) ◽  
pp. 43-49 ◽  
Author(s):  
RAMAKRISHNAN Y. NAGARAJ ◽  
CHRISTOPHER M. NOSEK ◽  
MARCO A. P. BROTTO ◽  
MIYUKI NISHI ◽  
HIROSHI TAKESHIMA ◽  
...  

Mitsugumin 29 (MG29), a major protein component of the triad junction in skeletal muscle, has been identified to play roles in the formation of precise junctional membrane structures important for efficient signal conversion in excitation-contraction (E-C) coupling. We carried out several experiments to not only study the role of MG29 in normal muscle contraction but also to determine its role in muscle fatigue. We compared the in vitro contractile properties of three muscles types, extensor digitorum longus (EDL) (fast-twitch muscle), soleus (SOL) (slow-twitch muscle), and diaphragm (DPH) (mixed-fiber muscle), isolated from mice lacking the MG29 gene and wild-type mice prior to and after fatigue. Our results indicate that the mutant EDL and SOL muscles, but not DPH, are more susceptible to fatigue than the wild-type muscles. The mutant muscles not only fatigued to a greater extent but also recovered significantly less than the wild-type muscles. Following fatigue, the mutant EDL and SOL muscles produced lower twitch forces than the wild-type muscles; in addition, fatiguing produced a downward shift in the force-frequency relationship in the mutant mice compared with the wild-type controls. Our results indicate that fatiguing affects the E-C components of the mutant EDL and SOL muscles, and the effect of fatigue in these mutant muscles could be primarily due to an alteration in the intracellular Ca homeostasis.


1987 ◽  
Vol 253 (3) ◽  
pp. C426-C432 ◽  
Author(s):  
D. M. Whitlock ◽  
R. L. Terjung

Rat slow-twitch muscle, in contrast to fast-twitch muscle, maintains its ATP content near normal during intense stimulation conditions that produce rapid fatigue. An extensive depletion of adenine nucleotide content by the deamination of AMP to IMP + NH3, typical of fast-twitch muscle, does not occur. We evaluated whether this response of slow-twitch muscle could be simply due to failure of synaptic transmission or related to cellular conditions influencing enzyme activity. Stimulation of soleus muscles in situ via the nerve or directly in the presence of curare at 120 tetani/min for 3 min resulted in extensive fatigue but normal ATP contents. Thus the lack of ATP depletion must be related to cellular events distal to neuromuscular transmission. Even nerve and direct muscle stimulation (with curare) during ischemia did not cause a large depletion of ATP or a large elevation of lactate content (12.0 +/- 0.7 mumol/g), even though the decline in tension was essentially complete. However, if the same tension decline during ischemia was prolonged by stimulating for 10 min at 12 tetani/min a large decrease in ATP (2.24 +/- 0.09 mumol/g) and increase in IMP (2.47 +/- 0.16 mumol/g) and lactate (30.4 +/- 2.0 mumol/g) content occurred. Thus adenine nucleotide deamination to IMP can occur in slow-twitch muscle during specific contraction conditions. The cellular events leading to the activation of AMP deaminase require an intense contraction condition and may be related to acidosis caused by a high lactate content.


2009 ◽  
Vol 297 (1) ◽  
pp. H223-H232 ◽  
Author(s):  
Qingsong Hu ◽  
Gen Suzuki ◽  
Rebeccah F. Young ◽  
Brian J. Page ◽  
James A. Fallavollita ◽  
...  

We performed the present study to determine whether hibernating myocardium is chronically protected from ischemia. Myocardial tissue was rapidly excised from hibernating left anterior descending coronary regions (systolic wall thickening = 2.8 ± 0.2 vs. 5.4 ± 0.3 mm in remote myocardium), and high-energy phosphates were quantified by HPLC during simulated ischemia in vitro (37°C). At baseline, ATP (20.1 ± 1.0 vs. 26.7 ± 2.1 μmol/g dry wt, P < 0.05), ADP (8.1 ± 0.4 vs. 10.3 ± 0.8 μmol/g, P < 0.05), and total adenine nucleotides (31.2 ± 1.3 vs. 40.1 ± 2.9 μmol/g, P < 0.05) were depressed compared with normal myocardium, whereas total creatine, creatine phosphate, and ATP-to-ADP ratios were unchanged. During simulated ischemia, there was a marked attenuation of ATP depletion (5.6 ± 0.9 vs. 13.7 ± 1.7 μmol/g at 20 min in control, P < 0.05) and mitochondrial respiration [145 ± 13 vs. 187 ± 11 ng atoms O2·mg protein−1·min−1 in control (state 3), P < 0.05], whereas lactate accumulation was unaffected. These in vitro changes were accompanied by protection of the hibernating heart from acute stunning during demand-induced ischemia. Thus, despite contractile dysfunction at rest, hibernating myocardium is ischemia tolerant, with reduced mitochondrial respiration and slowing of ATP depletion during simulated ischemia, which may maintain myocyte viability.


1991 ◽  
Vol 260 (4) ◽  
pp. C832-C840 ◽  
Author(s):  
D. A. Hood ◽  
G. Parent

Contractile and metabolic responses of rat fast-twitch gastrocnemius-plantaris muscles were studied. Acute in situ 10-Hz stimulation (STIM) for two 60-min periods, separated by 60 min of recovery (REC), was used. Muscles were removed at 1, 3, 15, 60, 75, 120, 123, or 180 min for metabolite measurements. Twitch and tetanic tensions were reduced to 36 and 28% of initial during the first 60 min of STIM. During REC, these tensions returned only to 56-58% of initial by 120 min. These contractile responses did not parallel changes in metabolites in mixed muscle. pH was reduced from 7.0 to 6.4 by 1 min, but by 15 min of STIM had returned to resting levels. Free ADP and AMP increased 3- and 15-fold during STIM, then decreased to resting levels by 3 min of REC. The most sensitive indicator of metabolic stress during STIM and REC was the phosphorylation potential, which varied up to 40-fold. After initial phases of depletion, ATP and phosphocreatine levels were partially restored despite ongoing STIM. Approximately 75% of the change in ATP level could be accounted for by IMP. In red gastrocnemius [fast-twitch red (FTR)] muscle, IMP was increased by 3 min of STIM but returned to control values by 60 min. Thus reamination of IMP occurred during contractions of FTR muscle. Metabolic and contractile responses during the second STIM period (120-180 min) were similar to the first. This cycle of metabolic and contractile responses occurs in fast-twitch muscle which, with chronically repeated STIM and REC periods, undergoes large phenotypic changes as a result of use.


1986 ◽  
Vol 60 (6) ◽  
pp. 1839-1842 ◽  
Author(s):  
A. Katz ◽  
K. Sahlin ◽  
J. Henriksson

ATP turnover and glycolytic rates during isometric contraction in humans have been investigated. Subjects contracted the knee extensor muscles at two-thirds maximal voluntary force to fatigue (mean +/- SE, 53 +/- 4 s). Biopsies were obtained before and after exercise and analyzed for high-energy phosphates and glycogenolytic-glycolytic intermediates. Total ATP turnover was 190 +/- 7 mmol/kg dry muscle, whereas the average turnover rate was 3.7 +/- 0.2 mmol . kg dry muscle-1 . S-1. The average ATP turnover rate was positively correlated with the percentage of fast-twitch fibers in the postexercise biopsy (r = 0.71; P less than 0.05) and negatively correlated with contraction duration to fatigue (r = -0.88; P less than 0.05). At fatigue, phosphocreatine ranged from 1 to 11 mmol/kg dry muscle (86–99% depletion of value at rest), whereas lactate ranged from 59 to 101. The mean glycolytic rate was 0.83 +/- 0.05 mmol . kg dry muscle-1 . S-1 and was positively correlated with the rate of glucose 6-phosphate accumulation (r = 0.83; P less than 0.05). It is concluded that a major determinant of the ATP turnover rate is the muscle fiber composition, which is probably explained by a higher turnover rate in fast-twitch fibers; fatigue is more closely related to a low phosphocreatine content than to a high lactate content; and the increase in prephosphofructokinase intermediates is important for stimulating glycolysis during contraction.


2005 ◽  
Vol 289 (3) ◽  
pp. H1123-H1130 ◽  
Author(s):  
E. Marty Knott ◽  
Myoung-Gwi Ryou ◽  
Jie Sun ◽  
Abraham Heymann ◽  
Arti B. Sharma ◽  
...  

Cardioplegic arrest for bypass surgery imposes global ischemia on the myocardium, which generates oxyradicals and depletes myocardial high-energy phosphates. The glycolytic metabolite pyruvate, but not its reduced congener lactate, increases phosphorylation potential and detoxifies oxyradicals in ischemic and postischemic myocardium. This study tested the hypothesis that pyruvate mitigates oxidative stress and preserves the energy state in cardioplegically arrested myocardium. In situ swine hearts were arrested for 60 min with a 4:1 mixture of blood and crystalloid cardioplegia solution containing 188 mM glucose alone (control) or with additional 23.8 mM lactate or 23.8 mM pyruvate and then reperfused for 3 min with cardioplegia-free blood. Glutathione (GSH), glutathione disulfide (GSSG), and energy metabolites [phosphocreatine (PCr), creatine (Cr), Pi] were measured in myocardium, which was snap frozen at 45 min arrest and 3 min reperfusion to determine antioxidant GSH redox state (GSH/GSSG) and PCr phosphorylation potential {[PCr]/([Cr][Pi])}. Coronary sinus 8-isoprostane indexed oxidative stress. Pyruvate cardioplegia lowered 8-isoprostane release ∼40% during arrest versus control and lactate cardioplegia. Lactate and pyruvate cardioplegia dampened ( P < 0.05 vs. control) the surge of 8-isoprostane release following reperfusion. Pyruvate doubled GSH/GSSG versus lactate cardioplegia during arrest, but GSH/GSSG fell in all three groups after reperfusion. Myocardial [PCr]/([Cr][Pi]) was maintained in all three groups during arrest. Pyruvate cardioplegia doubled [PCr]/([Cr][Pi]) versus control and lactate cardioplegia after reperfusion. Pyruvate cardioplegia mitigates oxidative stress during cardioplegic arrest and enhances myocardial energy state on reperfusion.


Sign in / Sign up

Export Citation Format

Share Document