scholarly journals Sustained laryngeal transient receptor potential vanilloid 1 activation inhibits mechanically induced swallowing in anesthetized rats

2020 ◽  
Vol 319 (3) ◽  
pp. G412-G419
Author(s):  
Midori Yoshihara ◽  
Takanori Tsujimura ◽  
Taku Suzuki ◽  
Kouta Nagoya ◽  
Naru Shiraishi ◽  
...  

Although a transient receptor potential vanilloid 1 (TRPV1) inhibitor or TRPV1-expressed neuronal inhibitor significantly inhibited HCl/capsaicin-evoked swallowing, air flow-induced swallowing was not affected. The number of air flow-induced swallows was significantly reduced within 60 min of TRPV1 activation. Evans blue dye concentration in the larynx increased 60 min after capsaicin application. TPRV1 activation not only desensitizes TRPV1 but also inactivates mechanoreceptors caused by increases in vascular permeability and edema.

Cephalalgia ◽  
2014 ◽  
Vol 34 (7) ◽  
pp. 514-522 ◽  
Author(s):  
K Ibrahimi ◽  
S Vermeersch ◽  
AHJ Danser ◽  
CM Villalón ◽  
AH van den Meiracker ◽  
...  

Background During migraine, trigeminal sensory nerve terminals release calcitonin gene-related peptide (CGRP), inducing nociception and vasodilation. Applied on the skin, capsaicin activates the transient receptor potential vanilloid type 1 (TRPV1) channel and releases CGRP from sensory nerve terminals, thus increasing dermal blood flow (DBF). Using capsaicin application and electrical stimulation of the forehead skin, a trigeminal nerve-innervated dermatome, we aimed to develop a model to measure trigeminal nerve-mediated vasodilation in humans. Methods Using laser Doppler imaging, forehead DBF responses to application of capsaicin (0.06 mg/ml and 6.0 mg/ml) and saline, with and without iontophoresis, were studied in healthy subjects. The within-subject coefficient of variation (WCV) of repeated DBF measurements was calculated to assess reproducibility. Results Maximal DBF responses to 6.0 mg/ml capsaicin with and without iontophoresis did not differ (Emax 459 ± 32 and 424 ± 32 arbitrary units (a.u.), WCV 6 ± 4%). In contrast, DBF responses to 0.06 mg/ml capsaicin were significantly larger with than without iontophoresis (Emax 307 ± 60 versus 187 ± 21 a.u., WCV 21 ± 13%). Saline with iontophoresis significantly increased DBF (Emax: 245 ± 26 a.u, WCV 11 ± 8%), while saline application without iontophoresis did not affect DBF. Conclusion Topical application of capsaicin and electrical stimulation induce reproducible forehead DBF increases and therefore are suitable to study trigeminal nerve-mediated vasodilation in humans.


2021 ◽  
Vol 8 ◽  
Author(s):  
Liangliang Liu ◽  
Mengting Guo ◽  
Xiaowang Lv ◽  
Zhiwei Wang ◽  
Jigang Yang ◽  
...  

Transient receptor potential vanilloid 4 (TRPV4) channels are widely expressed in systemic tissues and can be activated by many stimuli. TRPV4, a Ca2+-permeable cation channel, plays an important role in the vasculature and is implicated in the regulation of cardiovascular homeostasis processes such as blood pressure, vascular remodeling, and pulmonary hypertension and edema. Within the vasculature, TRPV4 channels are expressed in smooth muscle cells, endothelial cells, and perivascular nerves. The activation of endothelial TRPV4 contributes to vasodilation involving nitric oxide, prostacyclin, and endothelial-derived hyperpolarizing factor pathways. TRPV4 activation also can directly cause vascular smooth muscle cell hyperpolarization and vasodilation. In addition, TRPV4 activation can evoke constriction in some specific vascular beds or under some pathological conditions. TRPV4 participates in the control of vascular permeability and vascular damage, particularly in the lung capillary endothelial barrier and lung injury. It also participates in vascular remodeling regulation mainly by controlling vasculogenesis and arteriogenesis. This review examines the role of TRPV4 in vascular function, particularly in vascular dilation and constriction, vascular permeability, vascular remodeling, and vascular damage, along with possible mechanisms, and discusses the possibility of targeting TRPV4 for therapy.


Sign in / Sign up

Export Citation Format

Share Document