scholarly journals Augmentation of cGMP/PKG pathway and colonic motility by hydrogen sulfide

2017 ◽  
Vol 313 (4) ◽  
pp. G330-G341 ◽  
Author(s):  
Ancy D. Nalli ◽  
Sayak Bhattacharya ◽  
Hongxia Wang ◽  
Derek M. Kendig ◽  
John R. Grider ◽  
...  

Hydrogen sulfide (H2S), like nitric oxide (NO), causes smooth muscle relaxation, but unlike NO, does not stimulate soluble guanylyl cyclase (sGC) activity and generate cyclic guanosine 5′-monophosphate (cGMP). The aim of this study was to investigate the interplay between NO and H2S in colonic smooth muscle. In colonic smooth muscle from rabbit, mouse, and human, l-cysteine, substrate of cystathionine-γ-lyase (CSE), or NaHS, an H2S donor, inhibited phosphodiesterase 5 (PDE5) activity and augmented the increase in cGMP levels, IP3 receptor phosphorylation at Ser1756 (measured as a proxy for PKG activation), and muscle relaxation in response to NO donor S-nitrosoglutathione (GSNO), suggesting augmentation of cGMP/PKG pathway by H2S. The inhibitory effect of l-cysteine, but not NaHS, on PDE5 activity was blocked in cells transfected with CSE siRNA or treated with CSE inhibitor d,l-propargylglycine (dl-PPG), suggesting activation of CSE and generation of H2S in response to l-cysteine. H2S levels were increased in response to l-cysteine, and the effect of l-cysteine was augmented by GSNO in a cGMP-dependent protein kinase-sensitive manner, suggesting augmentation of CSE/H2S by cGMP/PKG pathway. As a result, GSNO-induced relaxation was inhibited by dl-PPG. In flat-sheet preparation of colon, l-cysteine augmented calcitonin gene-related peptide release in response to mucosal stimulation, and in intact segments, l-cysteine increased the velocity of pellet propulsion. These results demonstrate that in colonic smooth muscle, there is a novel interplay between NO and H2S. NO generates H2S via cGMP/PKG pathway, and H2S, in turn, inhibits PDE5 activity and augments NO-induced cGMP levels. In the intact colon, H2S promotes colonic transit. NEW & NOTEWORTHY Hydrogen sulfide (H2S) and nitric oxide (NO) are important regulators of gastrointestinal motility. The studies herein provide the cross talk between NO and H2S signaling to mediate smooth muscle relaxation and colonic transit. H2S inhibits phosphodiesterase 5 activity to augment cGMP levels in response to NO, which, in turn, via cGMP/PKG pathway, generates H2S. These studies suggest that interventions targeted at restoring NO and H2S homeostasis within the smooth muscle may provide novel therapeutic approaches to mitigate motility disorders.

2001 ◽  
Vol 281 (2) ◽  
pp. R476-R483 ◽  
Author(s):  
T. M. Mills ◽  
D. M. Pollock ◽  
R. W. Lewis ◽  
H. S. Branam ◽  
C. J. Wingard

Recent evidence indicates that endothelin-1 (ET-1) might be a principal vasoconstrictor in the penis. We report that ET-1 injection into the cavernous sinuses before erection sharply reduced the magnitude of subsequent erections. Corpus cavernosum pressure-to-mean arterial pressure ratios (CCP/MAP), with maximal ganglionic stimulation, were 0.62 ± 0.05 before ET-1 injection and 0.31 ± 0.05 after, indicating that ET-1 acted as a vasoconstrictor. When ET-1 was injected during a maximal neurally induced erection, the ability of ET-1 to attenuate subsequent erections was diminished (CCP/MAP 0.75 ± 0.02 before ET-1, 0.61 ± 0.03 after). At submaximal stimulation voltages, injection of ET-1 during erection also attenuated its vasoconstrictive effect. Similarly, when ET-1 was injected during erection induced by intracavernosal injection of the nitric oxide (NO) donor NOR-1, subsequent erections were not significantly suppressed (CCP/MAP 0.53 ± 0.04 before ET-1, 0.45 ± 0.04 after). These findings that ET-1-induced vasoconstriction is attenuated during erection are consistent with the hypothesis that NO mediates erection both by initiating pathways that cause smooth muscle relaxation and by inhibiting the vasoconstrictive actions of ET-1.


2004 ◽  
Vol 286 (3) ◽  
pp. H1043-H1056 ◽  
Author(s):  
Nikolaos M. Tsoukias ◽  
Mahendra Kavdia ◽  
Aleksander S. Popel

Nitric oxide (NO) plays many important physiological roles, including the regulation of vascular smooth muscle tone. In response to hemodynamic or agonist stimuli, endothelial cells produce NO, which can diffuse to smooth muscle where it activates soluble guanylate cyclase (sGC), leading to cGMP formation and smooth muscle relaxation. The close proximity of red blood cells suggests, however, that a significant amount of NO released will be scavenged by blood, and thus the issue of bioavailability of endothelium-derived NO to smooth muscle has been investigated experimentally and theoretically. We formulated a mathematical model for NO transport in an arteriole to test the hypothesis that transient, burst-like NO production can facilitate efficient NO delivery to smooth muscle and reduce NO scavenging by blood. The model simulations predict that 1) the endothelium can maintain a physiologically significant amount of NO in smooth muscle despite the presence of NO scavengers such as hemoglobin and myoglobin; 2) under certain conditions, transient NO release presents a more efficient way for activating sGC and it can increase cGMP formation severalfold; and 3) frequency-rather than amplitude-dependent control of cGMP formation is possible. This suggests that it is the frequency of NO bursts and perhaps the frequency of Ca2+ oscillations in endothelial cells that may limit cGMP formation and regulate vascular tone. The proposed hypothesis suggests a new functional role for Ca2+ oscillations in endothelial cells. Further experimentation is needed to test whether and under what conditions in silico predictions occur in vivo.


Toxicology ◽  
2009 ◽  
Vol 265 (1-2) ◽  
pp. 41-48 ◽  
Author(s):  
Bárbara S. Rocha ◽  
Bruno Gago ◽  
Rui M. Barbosa ◽  
João Laranjinha

2008 ◽  
Vol 179 (4S) ◽  
pp. 337-337
Author(s):  
Hani S Ertemi ◽  
David HW Lau ◽  
Faiz H Mumtaz ◽  
Dimitri P Mikhailidis ◽  
Cecil S Thompson

2020 ◽  
Vol 15 (11) ◽  
pp. 2958-2965
Author(s):  
Naoya Ieda ◽  
Yuji Hotta ◽  
Ayaka Yamauchi ◽  
Atsushi Nishikawa ◽  
Takahiro Sasamori ◽  
...  

2014 ◽  
Vol 741 ◽  
pp. 55-63 ◽  
Author(s):  
Jiehong Huang ◽  
Yu-li Luo ◽  
Yuan Hao ◽  
Yi-lin Zhang ◽  
Peng-xiao Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document