scholarly journals Computational modeling of anoctamin 1 calcium-activated chloride channels as pacemaker channels in interstitial cells of Cajal

2014 ◽  
Vol 306 (8) ◽  
pp. G711-G727 ◽  
Author(s):  
Rachel Lees-Green ◽  
Simon J. Gibbons ◽  
Gianrico Farrugia ◽  
James Sneyd ◽  
Leo K. Cheng

Interstitial cells of Cajal (ICC) act as pacemaker cells in the gastrointestinal tract by generating electrical slow waves to regulate rhythmic smooth muscle contractions. Intrinsic Ca2+ oscillations in ICC appear to produce the slow waves by activating pacemaker currents, currently thought to be carried by the Ca2+-activated Cl− channel anoctamin 1 (Ano1). In this article we present a novel model of small intestinal ICC pacemaker activity that incorporates store-operated Ca2+ entry and a new model of Ano1 current. A series of simulations were carried out with the ICC model to investigate current controversies about the reversal potential of the Ano1 Cl− current in ICC and to predict the characteristics of the other ion channels that are necessary to generate slow waves. The model results show that Ano1 is a plausible pacemaker channel when coupled to a store-operated Ca2+ channel but suggest that small cyclical depolarizations may still occur in ICC in Ano1 knockout mice. The results predict that voltage-dependent Ca2+ current is likely to be negligible during the slow wave plateau phase. The model shows that the Cl− equilibrium potential is an important modulator of slow wave morphology, highlighting the need for a better understanding of Cl− dynamics in ICC.

2016 ◽  
Vol 311 (6) ◽  
pp. G1037-G1046 ◽  
Author(s):  
Mei Hong Zhu ◽  
Tae Sik Sung ◽  
Masaaki Kurahashi ◽  
Lauren E. O'Kane ◽  
Kate O'Driscoll ◽  
...  

Interstitial cells of Cajal (ICC) generate electrical slow waves by coordinated openings of ANO1 channels, a Ca2+-activated Cl− (CaCC) conductance. Efflux of Cl− during slow waves must be significant, as there is high current density during slow-wave currents and slow waves are of sufficient magnitude to depolarize the syncytium of smooth muscle cells and PDGFRα+ cells to which they are electrically coupled. We investigated how the driving force for Cl− current is maintained in ICC. We found robust expression of Slc12a2 (which encodes an Na+-K+-Cl− cotransporter, NKCC1) and immunohistochemical confirmation that NKCC1 is expressed in ICC. With the use of the gramicidin permeabilized-patch technique, which is reported to not disturb [Cl−]i, the reversal potential for spontaneous transient inward currents ( ESTICs) was −10.5 mV. This value corresponds to the peak of slow waves when they are recorded directly from ICC in situ. Inhibition of NKCC1 with bumetanide shifted ESTICs to more negative potentials within a few minutes and reduced pacemaker activity. Bumetanide had no direct effects on ANO1 or CaV3.2 channels expressed in HEK293 cells or L-type Ca2+ currents. Reducing extracellular Cl− to 10 mM shifted ESTICs to positive potentials as predicted by the Nernst equation. The relatively rapid shift in ESTICs when NKCC1 was blocked suggests that significant changes in the transmembrane Cl− gradient occur during the slow-wave cycle, possibly within microdomains formed between endoplasmic reticulum and the plasma membrane in ICC. Recovery of Cl− via NKCC1 might have additional consequences on shaping the waveforms of slow waves via Na+ entry into microdomains.


2015 ◽  
Vol 308 (8) ◽  
pp. C608-C620 ◽  
Author(s):  
Mei Hong Zhu ◽  
Tae Sik Sung ◽  
Kate O'Driscoll ◽  
Sang Don Koh ◽  
Kenton M. Sanders

Interstitial cells of Cajal (ICC) provide pacemaker activity in gastrointestinal muscles that underlies segmental and peristaltic contractions. ICC generate electrical slow waves that are due to large-amplitude inward currents resulting from anoctamin 1 (ANO1) channels, which are Ca2+-activated Cl− channels. We investigated the hypothesis that the Ca2+ responsible for the stochastic activation of ANO1 channels during spontaneous transient inward currents (STICs) and synchronized activation of ANO1 channels during slow wave currents comes from intracellular Ca2+ stores. ICC, obtained from the small intestine of Kit +/copGFP mice, were studied under voltage and current clamp to determine the effects of blocking Ca2+ uptake into stores and release of Ca2+ via inositol 1,4,5-trisphosphate (IP3)-dependent and ryanodine-sensitive channels. Cyclocpiazonic acid, thapsigargin, 2-APB, and xestospongin C inhibited STICs and slow wave currents. Ryanodine and tetracaine also inhibited STICs and slow wave currents. Store-active compounds had no direct effects on ANO1 channels expressed in human embryonic kidney-293 cells. Under current clamp, store-active drugs caused significant depolarization of ICC and reduced spontaneous transient depolarizations (STDs). After block of ryanodine receptors with ryanodine and tetracaine, repolarization did not restore STDs. ANO1 expressed in ICC has limited access to cytoplasmic Ca2+ concentration, suggesting that pacemaker activity depends on Ca2+ dynamics in restricted microdomains. Our data from studies of isolated ICC differ somewhat from studies on intact muscles and suggest that release of Ca2+ from both IP3 and ryanodine receptors is important in generating pacemaker activity in ICC.


2005 ◽  
Vol 288 (3) ◽  
pp. C710-C720 ◽  
Author(s):  
Yoshihiko Kito ◽  
Sean M. Ward ◽  
Kenton M. Sanders

Pacemaker potentials were recorded in situ from myenteric interstitial cells of Cajal (ICC-MY) in the murine small intestine. The nature of the two components of pacemaker potentials (upstroke and plateau) were investigated and compared with slow waves recorded from circular muscle cells. Pacemaker potentials and slow waves were not blocked by nifedipine (3 μM). In the presence of nifedipine, mibefradil, a voltage-dependent Ca2+ channel blocker, reduced the amplitude, frequency, and rate of rise of upstroke depolarization (d V/d tmax) of pacemaker potentials and slow waves in a dose-dependent manner (1–30 μM). Mibefradil (30 μM) changed the pattern of pacemaker potentials from rapidly rising, high-frequency events to slowly depolarizing, low-frequency events with considerable membrane noise (unitary potentials) between pacemaker potentials. Caffeine (3 mM) abolished pacemaker potentials in the presence of mibefradil. Pinacidil (10 μM), an ATP-sensitive K+ channel opener, hyperpolarized ICC-MY and increased the amplitude and d V/d tmax without affecting frequency. Pinacidil hyperpolarized smooth muscle cells and attenuated the amplitude and d V/d tmax of slow waves without affecting frequency. The effects of pinacidil were blocked by glibenclamide (10 μM). These data suggest that slow waves are electrotonic potentials driven by pacemaker potentials. The upstroke component of pacemaker potentials is due to activation of dihydropyridine-resistant Ca2+ channels, and this depolarization entrains pacemaker activity to create the plateau potential. The plateau potential may be due to summation of unitary potentials generated by individual or small groups of pacemaker units in ICC-MY. Entrainment of unitary potentials appears to depend on Ca2+ entry during upstroke depolarization.


2017 ◽  
Vol 312 (3) ◽  
pp. G228-G245 ◽  
Author(s):  
John Malysz ◽  
Simon J. Gibbons ◽  
Siva A. Saravanaperumal ◽  
Peng Du ◽  
Seth T. Eisenman ◽  
...  

Myenteric plexus interstitial cells of Cajal (ICC-MY) in the small intestine are Kit+ electrical pacemakers that express the Ano1/TMEM16A Ca2+-activated Cl– channel, whose functions in the gastrointestinal tract remain incompletely understood. In this study, an inducible Cre-LoxP-based approach was used to advance the understanding of Ano1 in ICC-MY of adult mouse small intestine. KitCreERT2/+;Ano1Fl/Fl mice were treated with tamoxifen or vehicle, and small intestines (mucosa free) were examined. Quantitative RT-PCR demonstrated ~50% reduction in Ano1 mRNA in intestines of conditional knockouts (cKOs) compared with vehicle-treated controls. Whole mount immunohistochemistry showed a mosaic/patchy pattern loss of Ano1 protein in ICC networks. Ca2+ transients in ICC-MY network of cKOs displayed reduced duration compared with highly synchronized controls and showed synchronized and desynchronized profiles. When matched, the rank order for Ano1 expression in Ca2+ signal imaged fields of view was as follows: vehicle controls>>>cKO(synchronized)>cKO(desynchronized). Maintenance of Ca2+ transients’ synchronicity despite high loss of Ano1 indicates a large functional reserve of Ano1 in the ICC-MY network. Slow waves in cKOs displayed reduced duration and increased inter-slow-wave interval and occurred in regular- and irregular-amplitude oscillating patterns. The latter activity suggested ongoing interaction by independent interacting oscillators. Lack of slow waves and depolarization, previously reported for neonatal constitutive knockouts, were also seen. In summary, Ano1 in adults regulates gastrointestinal function by determining Ca2+ transients and electrical activity depending on the level of Ano1 expression. Partial Ano1 loss results in Ca2+ transients and slow waves displaying reduced duration, while complete and widespread absence of Ano1 in ICC-MY causes lack of slow wave and desynchronized Ca2+ transients. NEW & NOTEWORTHY The Ca2+-activated Cl− channel, Ano1, in interstitial cells of Cajal (ICC) is necessary for normal gastrointestinal motility. We knocked out Ano1 to varying degrees in ICC of adult mice. Partial knockout of Ano1 shortened the widths of electrical slow waves and Ca2+ transients in myenteric ICC but Ca2+ transient synchronicity was preserved. Near-complete knockout was necessary for transient desynchronization and loss of slow waves, indicating a large functional reserve of Ano1 in ICC. View this article's corresponding video summary at https://youtu.be/cyPtDP0KLY4 .


1990 ◽  
Vol 68 (3) ◽  
pp. 447-454 ◽  
Author(s):  
Jan D. Huizinga ◽  
Irene Berezin ◽  
Edwin E. Daniel ◽  
Edwin Chow

The effect of neural inhibition on the electrical activities of circular and longitudinal colonic smooth muscle was investigated. In addition, a comparative study was carried out between circular muscle preparations with and without the "submucosal" and "myenteric plexus" network of interstitial cells of Cajal (ICC) to study innervation of the "submucosal" ICC and to investigate whether or not the ICC network is an essential intermediary system for inhibitory innervation of smooth muscle cells. Electrical stimulation of intrinsic nerves in the presence of atropine caused inhibitory junction potentials (ijps) throughout the circular and longitudinal muscle layers. The ijp amplitude depended on the membrane potential and not on the location of the muscle cells with respect to the ICC network. Neurally mediated inhibition of the colon resulted in a reduction in amplitude and duration of slow wave type action potentials in circular and abolishment of spike-like action potentials in longitudinal smooth muscle, both resulting in a reduction of contractile activity. With respect to mediation by ICC, the study shows (i) "submucosal" ICC receive direct inhibitory innervation and (ii) circular smooth muscle cells can be directly innervated by inhibitory nerves without ICC as necessary intermediaries. The reversal potential of the ijp in colonic smooth muscle was observed to be approximately −76 mV, close to the estimated potassium equilibrium potential, suggesting that the nerve-mediated hyperpolarization is caused by increased potassium conductance.Key words: enteric nerves, potassium conductance, pacemaker activity, VIP, inhibitory junction potential.


2009 ◽  
Vol 587 (20) ◽  
pp. 4905-4918 ◽  
Author(s):  
Mei Hong Zhu ◽  
Tae Wan Kim ◽  
Seungil Ro ◽  
Wei Yan ◽  
Sean M. Ward ◽  
...  

2009 ◽  
Vol 587 (20) ◽  
pp. 4887-4904 ◽  
Author(s):  
Sung Jin Hwang ◽  
Peter J. A. Blair ◽  
Fiona C. Britton ◽  
Kate E. O’Driscoll ◽  
Grant Hennig ◽  
...  

2009 ◽  
Vol 297 (4) ◽  
pp. C971-C978 ◽  
Author(s):  
Nan Ge Jin ◽  
Sang Don Koh ◽  
Kenton M. Sanders

Interstitial cells of Cajal (ICC) discharge unitary potentials in gastrointestinal muscles that constitute the basis for pacemaker activity. Caffeine has been used to block unitary potentials, but the ionic conductance responsible for unitary potentials is controversial. We investigated currents in cultured ICC from murine jejunum that may underlie unitary potentials and studied the effects of caffeine. Networks of ICC generated slow wave events under current clamp, and these events were blocked by caffeine in a concentration-dependent manner. Single ICC generated spontaneous transient inward currents (STICs) under voltage clamp at −60 mV and noisy voltage fluctuations in current clamp. STICs were unaffected when the equilibrium potential for Cl− ( ECl) was set to −60 mV (excluding Cl− currents) and reversed at 0 mV, demonstrating that a nonselective cationic conductance, and not a Cl− conductance, is responsible for STICs in ICC. Caffeine inhibited STICs in a concentration-dependent manner. Reduced intracellular Ca2+ and calmidazolium (CMZ; 1 μM) activated persistent inward, nonselective cation currents in ICC. Currents activated by CMZ and by dialysis of cells with 10 mM BAPTA were also inhibited by caffeine. Excised inside-out patches contained channels that exhibited spontaneous openings, and resulting currents reversed at 0 mV. Channel openings were increased by reducing Ca2+ concentration from 10−6 M to 10−8 M. CMZ (1 μM) also increased openings of nonselective cation channels. Spontaneous currents and channels activated by CMZ were inhibited by caffeine (5 mM). The findings demonstrate that the Ca2+-inhibited nonselective cation channels that generate STICs in ICC are blocked directly by caffeine. STICs are responsible for unitary potentials in intact muscles, and the block of these events by caffeine is consistent with the idea that a nonselective cation conductance underlies unitary potentials in ICC.


Author(s):  
Maria-Gabriela Colmenares Aguilar ◽  
Amelia Mazzone ◽  
Seth T Eisenman ◽  
Peter R Strege ◽  
Cheryl E Bernard ◽  
...  

Interstitial cells of Cajal (ICC) generate electrical slow waves, which are required for normal gastrointestinal motility. The mechanisms for generation of normal pacemaking are not fully understood. Normal gastrointestinal contractility and electrical slow wave activity depend on the presence of extracellular HCO3-. Previous transcriptional analysis identified enrichment of mRNA encoding the electrogenic Na+/HCO3- cotransporter (NBCe1) gene (Slc4a4) in pacemaker myenteric ICC in mouse small intestine. We aimed to determine the distribution of NBCe1 protein in ICC of the mouse gastrointestinal tract, and to identify the transcripts of the Slc4a4 gene in mouse and human small intestinal tunica muscularis. We determined the distribution of NBCe1-immunoreactivity (NBCe1-IR) by immunofluorescent labeling in mouse and human tissues. In mice, NBCe1-IR was restricted to Kit-positive myenteric ICC of the stomach and small intestine and sub-muscular ICC of the large intestine; that is the slow wave generating subset of ICC. Other sub-types of ICC were NBCe1-negative. Quantitative real time PCR identified >500 fold enrichment of Slc4a4‑207 and Slc4a4‑208 transcripts (IP3-receptor binding protein released by IP3" (IRBIT) regulated isoforms) in Kit expressing cells isolated from KitcreERT2/+, Rpl22tm1.1Psam/Sj mice and from single GFP-positive ICC from Kittm1Rosay mice. Human jejunal tunica muscularis ICC were also NBCe1-positive and SLC4A4‑201 and SLC4A4‑204 RNAs were >300 fold enriched relative to SLC4A4‑202. In summary, NBCe1 protein expressed in ICC with electrical pacemaker function is encoded by Slc4a4 gene transcripts that generate IRBIT regulated isoforms of NBCe1. In conclusion Na+/HCO3- cotransport through NBCe1 contributes to the generation of pacemaker activity in subsets of ICC.


Sign in / Sign up

Export Citation Format

Share Document