d-Glucose modulates synaptic transmission from the central terminals of vagal afferent fibers

2008 ◽  
Vol 294 (3) ◽  
pp. G757-G763 ◽  
Author(s):  
Shuxia Wan ◽  
Kirsteen N. Browning

Experimental evidence suggests that glucose modulates gastric functions via vagally mediated effects. It is unclear whether glucose affects only peripheral vagal nerve activity or whether glucose also modulates vagal circuitry at the level of the brain stem. This study used whole cell patch-clamp recordings from neurons of the nucleus of the tractus solitarius (NTS) to assess whether acute variations in glucose modulates vagal brain stem neurocircuitry. Increasing d-glucose concentration induced a postsynaptic response in 40% of neurons; neither the response type (inward vs. outward current) nor response magnitude was altered in the presence of tetrodotoxin suggesting direct effects on the NTS neuronal membrane. In contrast, reducing d-glucose concentration induced a postsynaptic response (inward or outward current) in 54% of NTS neurons; tetrodotoxin abolished these responses, suggesting indirect sites of action. The frequency, but not amplitude, of spontaneous and miniature excitatory postsynaptic currents (EPSCs) was correlated with d-glucose concentration in 79% of neurons tested ( n = 48). Prior surgical afferent rhizotomy abolished the ability of d-glucose to modulate spontaneous EPSC frequency, suggesting presynaptic actions at vagal afferent nerve terminals to modulate glutamatergic synaptic transmission. In experiments in which EPSCs were evoked via electrical stimulation of the tractus solitarius, EPSC amplitude correlated with d-glucose concentration. These effects were not mimicked by l-glucose, suggesting the involvement of glucose metabolism, not uptake, in the nerve terminal. These data suggest that the synaptic connections between vagal afferent nerve terminals and NTS neurons are a strong candidate for consideration as one of the sites where glucose-evoked changes in vagovagal reflexes occurs.

2008 ◽  
Vol 295 (5) ◽  
pp. G1050-G1057 ◽  
Author(s):  
Shuxia Wan ◽  
Kirsteen N. Browning

Acute hyperglycemia has profound effects on vagally mediated gastrointestinal functions. We have reported recently that the release of glutamate from the central terminals of vagal afferent neurons is correlated directly with the extracellular glucose concentration. The present study was designed to test the hypothesis that 5-HT3 receptors present on vagal afferent nerve terminals are involved in this glucose-dependent modulation of glutamatergic synaptic transmission. Whole-cell patch-clamp recordings were made from neurons of the nucleus tractus solitarius (NTS) in thin rat brainstem slices. Spontaneous and evoked glutamate release was decreased in a concentration-dependent manner by the 5-HT3 receptor selective antagonist, ondansetron. Alterations in the extracellular glucose concentration induced parallel shifts in the ondansetron-mediated inhibition of glutamate release. The changes in excitatory synaptic transmission induced by extracellular glucose concentration were mimicked by the serotonin uptake inhibitor, fenfluramine. These data suggest that glucose alters excitatory synaptic transmission within the rat brainstem via actions on tonically active 5-HT3 receptors, and the number of 5-HT3 receptors on vagal afferent nerve terminals is positively correlated with the extracellular glucose concentration. These data indicate that the 5-HT3 receptors present on synaptic connections between vagal afferent nerve terminals and NTS neurons are a strong candidate for consideration as one of the sites where glucose acts to modulate vagovagal reflexes.


2009 ◽  
Vol 296 (1) ◽  
pp. G101-G111 ◽  
Author(s):  
Melissa A. Herman ◽  
Maureen T. Cruz ◽  
Niaz Sahibzada ◽  
Joseph Verbalis ◽  
Richard A. Gillis

It has been proposed that there is an “apparent monosynaptic” connection between gastric vagal afferent nerve terminals and inhibitory projection neurons in the nucleus tractus solitarius (NTS) and that two efferent parallel pathways from the dorsal motor nucleus of the vagus (DMV) influence peripheral organs associated with these reflexes ( 6 ). The purpose of our study was to verify the validity of these views as they relate to basal control of gastric motility. To test the validity of a direct connection of vagal afferent terminals (known to release l-glutamate) directly impacting second-order projection neurons, we evaluated the effect of GABAA receptor blockade in the area of the medial subnucleus of the tractus solitarius (mNTS) on gastric motility. Microinjection of bicuculline methiodide into the mNTS produced robust decreases in gastric motility (−1.6 ± 0.2 mmHg, P < 0.05, n = 23), which were prevented by cervical vagotomy and by pretreatment with kynurenic acid microinjected into the mNTS. Kynurenic acid per se had no effect on gastric motility. However, after GABAA receptor blockade in the mNTS, kynurenic acid produced a robust increase in gastric motility. To test for the contribution of two parallel efferent DMV pathways, we assessed the effect of either intravenous atropine methylbromide or NG-nitro-l-arginine methyl ester on baseline motility and on decreases in gastric motility induced by GABAA receptor blockade in the mNTS. Only atropine methylbromide altered baseline motility and prevented the effects of GABAA receptor blockade on gastric motility. Our data demonstrate the presence of intra-NTS GABAergic signaling between the vagal afferent nerve terminals and inhibitory projection neurons in the NTS and that the cholinergic-cholinergic excitatory pathway comprises the functionally relevant efferent arm of the vagovagal circuit.


2007 ◽  
Vol 292 (3) ◽  
pp. R1092-R1100 ◽  
Author(s):  
V. Baptista ◽  
K. N. Browning ◽  
R. A. Travagli

We have shown recently that cholecystokinin octapeptide (CCK-8s) increases glutamate release from nerve terminals onto neurons of the nucleus tractus solitarius pars centralis (cNTS). The effects of CCK on gastrointestinal-related functions have, however, been attributed almost exclusively to its paracrine action on vagal afferent fibers. Because it has been reported that systemic or perivagal capsaicin pretreatment abolishes the effects of CCK, the aim of the present work was to investigate the response of cNTS neurons to CCK-8s in vagally deafferented rats. In surgically deafferented rats, intraperitoneal administration of 1 or 3 μg/kg CCK-8s increased c-Fos expression in cNTS neurons (139 and 251% of control, respectively), suggesting that CCK-8s' effects are partially independent of vagal afferent fibers. Using whole cell patch-clamp techniques in thin brain stem slices, we observed that CCK-8s increased the frequency of spontaneous and miniature excitatory postsynaptic currents in 43% of the cNTS neurons via a presynaptic mechanism. In slices from deafferented rats, the percentage of cNTS neurons receiving glutamatergic inputs responding to CCK-8s decreased by ∼50%, further suggesting that central terminals of vagal afferent fibers are not the sole site for the action of CCK-8s in the brain stem. Taken together, our data suggest that the sites of action of CCK-8s include the brain stem, and in cNTS, the actions of CCK-8s are not restricted to vagal central terminals but that nonvagal synapses are also involved.


2004 ◽  
Vol 287 (1) ◽  
pp. G228-G235 ◽  
Author(s):  
Takayuki Mazda ◽  
Hiroshi Yamamoto ◽  
Masaki Fujimura ◽  
Mineko Fujimiya

We examined c- fos expression in specific brain nuclei in response to gastric distension and investigated whether 5-HT released from enterochromaffin (EC) cells was involved in this response. The role of 5-HT3 receptors in this mechanism was also addressed. Release of 5-HT was examined in an ex vivo-perfused stomach model, whereas c- fos expression in brain nuclei induced by gastric distension was examined in a freely moving conscious rat model. Physiological levels of gastric distension stimulated the vascular release of 5-HT more than luminal release of 5-HT, and induced c- fos expression in the nucleus of the solitary tract (NTS), area postrema (AP), paraventricular nucleus (PVN), and supraoptic nucleus (SON). The c- fos expression in all these brain nuclei was blocked by truncal vagotomy as well as by perivagal capsaicin treatment, suggesting that vagal afferent pathways may mediate this response. Intravenous injection of 5-HT3 receptor antagonist granisetron blocked c- fos expression in all brain nuclei examined, although intracerebroventricular injection of granisetron had no effect, suggesting that 5-HT released from the stomach may activate 5-HT3 receptors located in the peripheral vagal afferent nerve terminals and then induce brain c- fos expression. c- fos Positive cells in the NTS were labeled with retrograde tracer fluorogold injected in the PVN, suggesting that neurons in the NTS activated by gastric distension project axons to the PVN. The present results suggest that gastric distension stimulates 5-HT release from the EC cells and the released 5-HT may activate 5-HT3 receptors located on the vagal afferent nerve terminals in the gastric wall leading to neuron activation in the NTS and AP and subsequent activation of neurons in the PVN and SON.


2007 ◽  
Vol 293 (2) ◽  
pp. G493-G500 ◽  
Author(s):  
Eddy Viard ◽  
Zhongling Zheng ◽  
Shuxia Wan ◽  
R. Alberto Travagli

Cholecystokinin (CCK) has been proposed to act in a vagally dependent manner to increase pancreatic exocrine secretion via actions exclusively at peripheral vagal afferent fibers. Recent evidence, however, suggests the CCK-8s may also affect brain stem structures directly. We used an in vivo preparation with the aims of 1) investigating whether the actions of intraduodenal casein perfusion to increase pancreatic protein secretion also involved direct actions of CCK at the level of the brain stem and, if so, 2) determining whether, in the absence of vagal afferent inputs, CCK-8s applied to the dorsal vagal complex (DVC) can also modulate pancreatic exocrine secretion (PES). Sprague-Dawley rats (250–400 g) were anesthetized and the common bile-pancreatic duct was cannulated to collect PES. Both vagal deafferentation and pretreatment with the CCK-A antagonist lorglumide on the floor of the fourth ventricle decreased the casein-induced increase in PES output. CCK-8s microinjection (450 pmol) in the DVC significantly increased PES; the increase was larger when CCK-8s was injected in the left side of the DVC. Protein secretion returned to baseline levels within 30 min. Microinjection of CCK-8s increased PES (although to a lower extent) also in rats that underwent complete vagal deafferentation. These data indicate that, as well as activating peripheral vagal afferents, CCK-8s increases pancreatic exocrine secretion via an action in the DVC. Our data suggest that the CCK-8s-induced increases in PES are due mainly to a paracrine effect of CCK; however, a relevant portion of the effects of CCK is due also to an effect of the peptide on brain stem vagal circuits.


1971 ◽  
Vol 177 (1049) ◽  
pp. 509-539 ◽  

Synaptic transmission has been analysed in parasympathetic nerve cells that lie in the transparent interatrial septum of the heart of the frog. Using Nomarski interference optics, one can see much cellular detail, including synaptic boutons in living preparations. 1. On each ganglion cell, the 10 to 20 synaptic boutons are usually derived from a single vagal nerve fibre. These fibres branch extensively to innervate a number of septal ganglion cells. 2. The chemical transmitter, acetylcholine (ACh), liberated by a presynaptic impulse survives for up to 40 ms, setting up an excitatory postsynaptic potential (e.p.s.p.) which triggers one and sometimes two action potentials in the postsynaptic cell. The e.p.s.p. is made up of quantal components, as at the neuromuscular junction. 3. Nerve-evoked e.p.s.p.s can be well matched in amplitude and time course by iontophoretic application of ACh to selected areas of the neuronal membrane. In particular, the miniature e.p.s.p., which is due to the focal release of a small quantity of transmitter, was accurately mimicked by iontophoretic application of ACh. By grading the amount of ACh released from an electrode one could also duplicate the wide variety of nerve-evoked postsynaptic discharges of ganglion cells. 4. The permeability changes initiated in the postsynaptic membrane by applied ACh and the synaptic transmitter appear identical, since the ionic fluxes for both responses have the same equilibrium potential. Also, the receptors which react with the synaptic transmitter are desensitized by applied ACh. 5. Cholinesterase inhibitors (Tensilon and Eserine) have a variable action on different cells, with respect both to nerve-evoked and Ach evoked potentials. The reasons for this variation are unclear, and need further study. 6. Miniature e.p.s.p.s resemble analogous potentials at nerve-muscle junctions and other synapses. A significant proportion of the min e.p.s.p.s is released as multiple units. This proportion is increased in high Ca2+, while single units alone occur in a low Ca2+-high Mg2+ environment. 7. The experiments provide information about the release of ACh from nerve terminals and its action on the postsynaptic membrane of neurons. They are in good agreement with analogous studies on skeletal neuromuscular junctions


2021 ◽  
Author(s):  
A.N. Kadenov ◽  
O.V. Yakovleva

Hydrogen sulfide is one of the gas-transmitters that also performs other biological functions. The antioxidant property of this substance is one of the important ones. The research was conducted on rats of both sexes between 6 and 18 days of age. We have shown that the offspring of females injected subcutaneously with hydrogen sulfide increased the area and luminescence of nerve terminals during postnatal ontogenesis, which can be further used to level the effects of hyperhomocysteinemia on synaptic transmission. Key words: neuromuscular synapse, fluorescent microscopy, hydrogen sulfide.


2008 ◽  
Vol 104 (5) ◽  
pp. 1394-1401 ◽  
Author(s):  
David F. Donnelly

The mechanism by which action potentials (APs) are generated in afferent nerve fibers in the carotid body is unknown, but it is generally speculated to be release of an excitatory transmitter and synaptic depolarizing events. However, previous results suggested that Na+ channels in the afferent nerve fibers play an important role in this process. To better understand the potential mechanism by which Na+ channels may generate APs, a mathematical model of chemoreceptor nerve fibers that incorporated Hodgkin-Huxley-type Na+ channels with kinetics of activation and inactivation, as determined previously from recordings of petrosal chemoreceptor neurons, was constructed. While the density of Na+ channels was kept constant, spontaneous APs arose in nerve terminals as the axonal diameter was reduced to that in rat carotid body. AP excitability and pattern were similar to those observed in chemoreceptor recordings: 1) a random pattern at low- and high-frequency discharge rates, 2) a high sensitivity to reductions in extracellular Na+ concentration, and 3) a variation in excitability that increased with AP generation rate. Taken together, the results suggest that an endogenous process in chemoreceptor nerve terminals may underlie AP generation, a process independent of synaptic depolarizing events.


2004 ◽  
Vol 92 (3) ◽  
pp. 1658-1667 ◽  
Author(s):  
Mark C. Bieda ◽  
M. Bruce MacIver

Anesthetics appear to produce neurodepression by altering synaptic transmission and/or intrinsic neuronal excitability. Propofol, a widely used anesthetic, has proposed effects on many targets, ranging from sodium channels to GABAA inhibition. We examined effects of propofol on the intrinsic excitability of hippocampal CA1 neurons (primarily interneurons) recorded from adult rat brain slices. Propofol strongly depressed action potential production induced by DC injection, synaptic stimulation, or high-potassium solutions. Propofol-induced depression of intrinsic excitability was completely reversed by bicuculline and picrotoxin but was strychnine-insensitive, implicating GABAA but not glycine receptors. Propofol strongly enhanced inhibitory postsynaptic currents (IPSCs) and induced a tonic GABAA-mediated current. We pharmacologically differentiated tonic and phasic (synaptic) GABAA-mediated inhibition using the GABAA receptor antagonist SR95531 (gabazine). Gabazine (20 μM) completely blocked both evoked and spontaneous IPSCs but failed to block the propofol-induced depression of intrinsic excitability, implicating tonic, but not phasic, GABAA inhibition. Glutamatergic synaptic responses were not altered by propofol (≤30 μM). Similar results were found in both interneurons and pyramidal cells and with the chemically unrelated anesthetic thiopental. These results suggest that suppression of CA1 neuron intrinsic excitability, by these anesthetics, is largely due to activation of tonic GABAA conductances; although other sites of action may play important roles in affecting synaptic transmission, which also can produce strong neurodepression. We propose that for some anesthetics, suppression of intrinsic excitability, mediated by tonic GABAA conductances, operates in conjunction with effects on synaptic transmission, mediated by other mechanisms, to depress hippocampal function during anesthesia.


Sign in / Sign up

Export Citation Format

Share Document