Chymotrypsin, ileal chloride transport, and neurotransmitters

1984 ◽  
Vol 247 (3) ◽  
pp. G253-G260 ◽  
Author(s):  
K. A. Hubel

Electrical field stimulation (EFS) depolarizes nerves and causes chloride secretion by mucosa of rabbit ileum mounted in a flux chamber. To test the hypothesis that the transmitter is a peptide, we determined whether the EFS response was prevented by the endopeptidase chymotrypsin (CT). Serosal, but not mucosal, addition of CT (200 micrograms/ml) reduced the short-circuit current (Isc) response to EFS by 90% or more. CT also reduced Cl absorption by decreasing the mucosal-to-serosal flux, but it did not affect net Na absorption. CT prevented the response to vasoactive intestinal polypeptides, but the response returned when CT activity was eliminated. The response to EFS did not return, however, implying that CT damaged cells that released transmitter or epithelial target cells. CT reduced the Isc response to serotonin by 69% and to A23187 by 10% and did not affect the theophylline response. We conclude that 1) the effects of CT on cell function limit its usefulness in identifying peptide neurotransmitters in epithelium, 2) CT irreversibly inhibits ion transport responses to EFS and to serotonin, and 3) CT reduces absorption of Cl probably by affecting a calcium pathway that modifies Cl transport.

1984 ◽  
Vol 246 (4) ◽  
pp. G372-G377 ◽  
Author(s):  
H. J. Cooke ◽  
P. R. Nemeth ◽  
J. D. Wood

Nerve-mediated and direct actions of histamine on mucosal transport function in the guinea pig ileum were investigated. Addition of histamine to the serosal side of flat sheet preparations in Ussing chambers evoked a transient increase in base-line short-circuit current that was due primarily to an increase in active chloride secretion. The mucosal response to histamine was mimicked by the H1-receptor agonist 2-methylhistamine, but not by the H2-receptor agonist dimaprit. The histamine-evoked response was prevented by the H1-receptor blocker pyrilamine, but not by the H2-receptor antagonist cimetidine. Thirty percent of the mucosal response to histamine was inhibited by tetrodotoxin. Intracellular electrical recording showed that histamine activated AH/type 2 myenteric neurons, and this response was abolished in the presence of pyrilamine. Local anesthetic action of pyrilamine was ruled out by direct electrical recording from myenteric neurons in the presence and absence of pyrilamine. Electrical field stimulation evoked a biphasic increase in short-circuit current. Histamine and 2-methylhistamine did not alter the sustained phase of the short-circuit current response to electrical field stimulation, although pyrilamine reduced the electrically evoked response by 22%. Muscarinic blockade with atropine reduced the stimulus-evoked response by 55%. When muscarinic receptors were blocked and electrical field stimulation applied, histamine increased the stimulus-evoked mucosal response by 22.3%. These results suggest that histamine increases short-circuit current and chloride secretion by acting at H1-receptor sites on both the enteric innervation of the mucosa and on the enterocytes.


1983 ◽  
Vol 244 (5) ◽  
pp. G501-G506 ◽  
Author(s):  
K. A. Hubel

Scorpion venom, which depolarizes nerves, was used to obtain further evidence that intramural nerves affect ion transport by the rabbit ileum. Ileal epithelium, stripped of muscularis propria, was mounted in a flux chamber modified to permit electrical field stimulation (EFS) of the tissue. Response of the short-circuit current (Isc) to venom was most rapid on the serosal surface, and the response was eliminated by tetrodotoxin. Isc response was influenced by venom batch number and by factors within the tissue. Venom (10 micrograms/ml) and EFS each caused chloride secretion by reducing mucosal-to-serosal movement and by increasing serosal-to-mucosal movement. Sodium transport and residual ion fluxes did not change. In the presence of venom, EFS caused no further changes in ion transport, but tissues still responded to glucose and to aminophylline. The early peak of Isc was reduced about 40% by atropine, implying that acetylcholine, released by venom, stimulates muscarinic receptors. The blockade of the Isc response to venom with tetrodotoxin is further evidence that venom depolarizes intramural nerves and liberates transmitters that cause chloride secretion. The identity of the other transmitters is not known.


1980 ◽  
Vol 239 (1) ◽  
pp. G18-G22 ◽  
Author(s):  
K. A. Hubel ◽  
D. Callanan

[Ca2+] affects nerves and target cells in stimulus-secretion coupling. In flux-chamber studies of full-thickness rabbit ileum, we determined the effects of 1) ethylene glycol bis-(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA) 1.25 mM, 2) verapamil 0.1 mM and nifedipine 0.1 mM, and 3) trifluoperazine 0.1 mM on ion transport and its response to electrical field stimulation (EFS). EGTA increased JClm leads to s, JNam leads to s, Cl absorption and conductivity (G), and reduced Isc. In the absence of EGTA, EFS increased transmural PD and Isc and caused secretion of Na and Cl. EGTA prevented the responses to EFS, but the Isc responses to aminophylline and to glucose were normal. Verapamil reduced the response of Isc and Cl transport to EFS. Nifedipine reduced Isc but not the Isc response to EFS. Trifluoperazine reduced Isc and almost eliminated the Isc response to EFS. EFS did not increase the tissue concentration of cAMP. We conclude: 1) low extracellular [Ca2+] enhances net Cl absorption; 2) extracellular Ca2+ is required for the response of ion transport to EFS; 3) cAMP does not mediate Isc response to EFS; and 4) Isc response to EFS is blocked by trifluoperazine. The findings suggest that EFS stimulates secretion by increasing Ca entry into the epithelial cells, either directly or indirectly.


1989 ◽  
Vol 256 (5) ◽  
pp. G919-G924 ◽  
Author(s):  
K. A. Hubel ◽  
K. S. Renquist ◽  
G. Varley

Norepinephrine is one of three neurotransmitters that may act directly on enterocytes to enhance absorption; its interaction with secretagogues is of physiological importance. We have studied the influence of norepinephrine on the short-circuit current (Isc) responses to acetylcholine (ACh; 10 microM), vasoactive intestinal polypeptide (VIP; 100 pM-10 nM), peptide histidine isoleucine (PHI; 100 pM-10 nM), histamine (0.1 mM), and to electrical field stimulation (EFS) of rabbit ileum mounted in flux chambers. Tetrodotoxin reduced the response to norepinephrine (10 microM) by 40% and to histamine by 32% but did not affect responses to VIP or PHI. Norepinephrine decreased the ACh response (EC50, 70 nM) and reduced the responses to PHI (less than or equal to 87%), to EFS (less than or equal to 75%), and to histamine (less than or equal to 42%). Norepinephrine decreased the response to VIP (500 pM) but not to higher or lower VIP concentrations. It enhanced the response to VIP (10 nM) and to theophylline (5 mM). We conclude that 1) norepinephrine increases absorption by acting on nerves and enterocytes; 2) the failure of norepinephrine to reduce the Isc response to VIP when the VIP-induced increment in Isc is comparable to that caused by EFS is evidence that VIP does not mediate the EFS response; 3) PHI might mediate the EFS response; and 4) VIP, PHI, and histamine affect enterocytes directly; histamine also affects intrinsic nerves.


1975 ◽  
Vol 228 (6) ◽  
pp. 1808-1814 ◽  
Author(s):  
HN Nellans ◽  
RA Frizzell ◽  
SG Schultz

Acetazolamide (8 mM) aboishes active Cl absorption and inhibits but does not abolish active Na absorption by stripped, short-circuited rabbit ileum. These effects are not accompanied by significant changes in the transmural electrical potential difference or short-circuit current. Studies of the undirectional influxes of Na andCl indicate that acetazolamide inhibits the neutral, coupled NaCl influx process at the mucosal membranes. This action appears to explain the observed effect of acetazolamide on active, transepithelial Na and Cl transport. Acetazolamide did not significantly inhibit either spontaneous or theophylline-induced Cl secretion by this preparation, suggesting that the theophylline-induced secretion may not simply be due tothe unmasking of a preexisting efflux process when the neutral influx mechanism is inhibited by theophylline. Finally, inhibition of the neutral NaCl influx process by acetazolamide does not appear to be attributable to an inhibition of endogenous HCO3production or an elevation in intracellular cyclic-AMP levels. Instead, it appearstheat the effect of acetazolamide is due to a direct interaction with a membrane component involved in the coupled influx process.


1994 ◽  
Vol 266 (1) ◽  
pp. G132-G139 ◽  
Author(s):  
T. Frieling ◽  
C. Rupprecht ◽  
A. B. Kroese ◽  
M. Schemann

Conventional flux chamber and intracellular recording methods were used to investigate the mode of action of prostaglandin D2 (PGD2) on ion transport in muscle-stripped segments of guinea pig colon and on colonic submucosal ganglion cells. Application of PGD2 resulted in a dose-dependent increase in short-circuit current that was reduced by serosal addition of bumetanide, tetrodotoxin, atropine, or piroxicam, but not hexamethonium. Application of PGD2 to submucosal neurons evoked a depolarization of the membrane potential that was associated with an enhanced spike discharge. In AH/type 2 neurons, postspike afterhyperpolarizations were reduced in amplitude and duration. The depolarizing responses to PGD2 were not affected by tetrodotoxin, indicative of a direct effect of PGD2 on the impaled neurons. Whereas fast excitatory postsynaptic potentials (EPSPs) were not affected by PGD2, slow EPSPs were reduced by a presynaptic effect, indicating presynaptic suppression of noncholinergic neurotransmitter release. The study demonstrates that PGD2 acts as a neuromodulator to evoke nerve-mediated chloride secretion, predominantly through activation of cholinergic submucosal neurons. The results further indicate that PGD2 released from lamina propria immune cells during antigenic stimulation may influence mucosal function by altering electrical behavior of submucosal neurons.


1983 ◽  
Vol 245 (6) ◽  
pp. G780-G785
Author(s):  
M. Donowitz ◽  
S. Cusolito ◽  
L. Battisti ◽  
G. W. Sharp

The effect of dantrolene on active ion transport in rabbit ileum was determined using the Ussing chamber short-circuiting technique. Dantrolene prevents the release of calcium from intracellular stores in skeletal muscle and was used to probe the role of intracellular calcium stores in intestinal ion transport. A saturated solution of dantrolene (approx 25 microM) decreased ileal short-circuit current and potential difference, increased conductance and mucosal-to-serosal and net Na and Cl fluxes, but did not alter serosal-to-mucosal Na and Cl fluxes. The dantrolene stimulation of active Na and Cl absorption was specific since it did not alter glucose-dependent Na absorption, transport changes caused by Ca2+ ionophore A23187, or the increase in short-circuit current caused by dibutyryl cAMP or theophylline. These effects were associated with an increase in total ileal calcium content and a decreased rate of 45Ca2+ efflux without any change in 45Ca2+ influx from the serosal or mucosal surfaces. These findings are consistent with an effect of dantrolene to stimulate active ileal Na and Cl absorption by a mechanism involving lowered cytosol Ca2+ levels and compatible with trapping calcium in intracellular stores. It thus appears as if intracellular calcium stores have an important role in the control of basal ion transport in the intestine.


2000 ◽  
Vol 279 (6) ◽  
pp. C1787-C1794 ◽  
Author(s):  
Katalin Gyömörey ◽  
Herman Yeger ◽  
Cameron Ackerley ◽  
Elizabeth Garami ◽  
Christine E. Bear

The chloride channel ClC-2 has been implicated in neonatal airway chloride secretion. To assess its role in secretion by the small intestine, we assessed its subcellular expression in ileal segments obtained from mice and studied the chloride transport properties of this tissue. Chloride secretion across the mucosa of murine ileal segments was assessed in Ussing chambers as negative short-circuit current ( Isc). If ClC-2 contributed to chloride secretion, we predicted on the basis of previous studies that negative Iscwould be stimulated by dilution of the mucosal bath and that this response would depend on chloride ion and would be blocked by the chloride channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid but not by DIDS. In fact, mucosal hypotonicity did stimulate a chloride-dependent change in Iscthat exhibited pharmacological properties consistent with those of ClC-2. This secretory response is unlikely to be mediated by the cystic fibrosis transmembrane conductance regulator (CFTR) channel because it was also observed in CFTR knockout animals. Assessment of the native expression pattern of ClC-2 protein in the murine intestinal epithelium by confocal and electron microscopy showed that ClC-2 exhibits a novel distribution, a distribution pattern somewhat unexpected for a channel involved in chloride secretion. Immunolabeled ClC-2 was detected predominantly at the tight junction complex between adjacent intestinal epithelial cells.


1990 ◽  
Vol 258 (2) ◽  
pp. G223-G230 ◽  
Author(s):  
B. Biagi ◽  
Y. Z. Wang ◽  
H. J. Cooke

The effects of tetrodotoxin (TTX) were examined in muscle-stripped segments of rabbit distal colon and in cells of isolated colonic crypts. Electrical field stimulation (EFS) of the submucosa/mucosa evoked an increase in short-circuit current (ISC) that was due to an increase in chloride secretion. The EFS-evoked response was reduced 81% by 10(-7) M TTX and 30% by 5 X 10(-6) M atropine. Vasoactive intestinal peptide (VIP), carbachol, aminophylline, and 1,1-dimethyl-4-phenylpiperazinium increased ISC. Bumeta nide reduced the responses to neural stimulation, aminophylline, and VIP. To determine whether TTX had direct effects on crypt epithelial cells, crypts were isolated and cells were impaled with microelectrodes. Mean resting potential (Vbl) was -67 +/- 1.1 mV (n = 63). VIP and aminophylline depolarized Vbl by 34 +/- 4.6 (n = 13) and 34 +/- 3.5 mV (n = 18), respectively. TTX had no significant effect on resting Vbl or on the responses to VIP or aminophylline. We conclude that stimulation of submucosal neurons in the rabbit distal colon evokes a TTX- and bumetanide-sensitive increase in net chloride secretion that is dependent on the release of acetylcholine and other secretory neurotransmitters. Electrophysiological studies rule out a direct effect of TTX on colonic crypt cells.


1990 ◽  
Vol 258 (6) ◽  
pp. G887-G893 ◽  
Author(s):  
Y. Z. Wang ◽  
H. J. Cooke

We tested the hypothesis that histamine mediates ion secretion in the guinea pig distal colon by stimulating H2 receptors on submucosal neurons. Serosal addition of histamine evoked a transient increase in short-circuit current (Isc) followed by recurrent cyclical increases in Isc. The transient phase of the response was examined previously and was not investigated in these studies. Histamine (1.5-2.5 x 10(-5) M) evoked a peak increase in Isc of 177 +/- 25 microA/cm2 at intervals of 5 min for 1-2 h. The duration of each recurrent cycle averaged 2.1 +/- 0.3 min. The H2 agonist dimaprit evoked recurrent cycles that had larger amplitudes than those caused by histamine. In the presence of histamine or dimaprit, the amplitude of the first cycle of the response was always less than subsequent cycles, regardless of the initial concentration. The cyclical responses to histamine, 2-methylhistamine, or dimaprit were unaltered by the H1 blocker pyrilamine, were reduced by the H2 antagonist cimetidine, and were abolished by the neuronal blocker tetrodotoxin. Blockade of prostaglandin formation with piroxicam did not prevent the recurrent cycles. The recurrent cycles were inhibited by the chloride transport blocker bumetanide and by removal of chloride ions. Our results demonstrate that histamine mediates prolonged cyclical chloride secretion in the guinea pig distal colon by activating H2 receptors on submucosal neurons involved in regulation of epithelial chloride transport.


Sign in / Sign up

Export Citation Format

Share Document