Effect of CCK antagonist L 364718 on meal-induced pancreatic secretion in rats

1990 ◽  
Vol 258 (2) ◽  
pp. G179-G184 ◽  
Author(s):  
M. F. O'Rourke ◽  
R. D. Reidelberger ◽  
T. E. Solomon

The specific cholecystokinin (CCK)-receptor antagonist L 364718 was used to examine the role of CCK in meal-induced pancreatic secretion. Unanesthetized rats with gastric, jugular vein, bilepancreatic, and duodenal cannulas were used; bile-pancreatic juice was recirculated. Basal amylase secretion (30% of maximal) was not inhibited by L 364718 doses of 0.5 or 2 mg/kg intravenously. L 364718 (0.02 to 2 mg/kg) caused dose-related inhibition of the maximal amylase response to CCK-8 (200 pmol.kg-1.h-1), with greater than 80% inhibition at doses greater than or equal to 0.5 mg/kg. L 364718 (0.5 mg/kg) shifted the dose-response curve to CCK-8 (25-3,200 pmol.kg-1.h-1) to the right (ED50 increased 10-fold) but did not alter maximal amylase output consistent with competitive inhibition of CCK in vivo. Ingestion of liquid food significantly increased amylase output threefold above basal. L 364718 (0.5 mg/kg) completely blocked this response. These results suggest that although CCK does not regulate basal pancreatic enzyme secretion, it is the primary mediator of pancreatic enzyme secretion in response to a liquid meal.

1991 ◽  
Vol 261 (5) ◽  
pp. G735-G741
Author(s):  
M. F. O'Rourke ◽  
R. D. Reidelberger ◽  
T. E. Solomon

Atropine was used to examine the role of cholinergic mechanisms in the pancreatic secretory response to food intake. Unanesthetized rats with gastric, jugular vein, bile-pancreatic, and duodenal cannulas were used; bile-pancreatic juice was recirculated. The maximal response to bethanechol (4 mg.kg-1.h-1) was similar to cholecystokinin (CCK)-8-induced maximal secretion. Atropine (25-200 micrograms.kg-1.h-1) markedly inhibited basal amylase output and caused dose-related inhibition of the incremental response to a maximal dose of bethanechol. Atropine (50 micrograms.kg-1.h-1) shifted the dose-response curve to bethanechol (1-32 mg.kg-1.h-1) to the right but did not alter maximal amylase output. L 364718 (0.5 mg/kg), a CCK receptor antagonist, had no effect on bethanechol-stimulated pancreatic secretion. Atropine (50 micrograms.kg-1.h-1) did not affect the incremental responses to low doses of CCK-8; the maximal response occurred at a higher CCK-8 dose because atropine decreased basal secretion. Atropine (50 or 200 micrograms.kg-1.h-1) did not decrease the amylase response to ingestion of a liquid meal. We conclude that 1) bethanechol is a full agonist for stimulation of pancreatic enzyme secretion and its effects are not mediated by CCK release; 2) atropine is a competitive antagonist of bethanechol-induced pancreatic secretion in vivo but does not directly affect responses to CCK-8; 3) cholinergic mechanisms do not mediate the pancreatic enzyme response to a liquid meal in rats.


1981 ◽  
Vol 59 (9) ◽  
pp. 994-1001 ◽  
Author(s):  
Seymour Heisler ◽  
Laurence Chauvelot ◽  
Diane Desjardins ◽  
Christiane Noel ◽  
Herman Lambert ◽  
...  

Many calcium-mediated effects in mammalian cells may be activated by calcium-calmodulin stimulated enzymes. These effects are inhibited by various antidepressant drugs which bind to and inactivate calmodulin. In the current study, calmodulin was identified by affinity chromatography and gel electrophoresis in the cytoplasm of dispersed rat pancreatic acinar cells. Its role in enzyme secretion was assessed by evaluating the effects of various antidepressant drugs on the enzyme secretory process. Chlorpromazine, trifluoperazine, thioridazine, chlorprothixene and amitriptyline inhibited amylase secretion stimulated by carbacol, A-23187, and cholecystokinin-pancreozymin but not that elicitied by dibutyryl cyclic AMP secretin or vasoactive intestinal peptide (VIP). Haloperidol, sulpiride, phenobarbital, and ethanol were without effect on secretagogue-stimulated enzyme release. Only those agents which blocked secretion also inhibited 45Ca release stimulated by carbachol from isotope preloaded cells. The data suggest that calmodulin may have a functional role in pancreatic enzyme secretion.


1987 ◽  
Vol 252 (3) ◽  
pp. G384-G391
Author(s):  
G. Z. Pan ◽  
L. Lu ◽  
J. M. Qian ◽  
B. G. Xue

In dispersed acini from rat pancreas, it was found that bovine pancreatic polypeptide (BPP) and its C-fragment hexapeptide amide (PP-6), at concentrations of 0.1 and 30 microM, respectively, could significantly inhibit amylase secretion stimulated by carbachol (P less than 0.01 or 0.05, respectively), and this inhibition by BPP was dose dependent. 45Ca outflux induced by carbachol was also inhibited by BPP or PP-6, but they had no effect on cholecystokinin octapeptide- (CCK-8) or A23187-stimulated 45Ca outflux. BPP was also capable of displacing the specific binding of [3H]quinuclidinyl benzilate to its receptors, and it possessed a higher affinity (ki 35 nM) than carbachol (Ki 1.8 microM) in binding with M-receptors. It is concluded from this study that BPP acts as an antagonist of muscarinic cholinergic receptors in rat pancreatic acini. In addition, BPP inhibited the potentiation of amylase secretion caused by the combination of carbachol plus secretin or vasoactive intestinal peptide. This may be a possible explanation of the inhibitory effect of BPP on secretin-induced pancreatic enzyme secretion shown in vivo, since pancreatic enzyme secretion stimulated by secretin under experimental conditions may be the result of potentiation of enzyme release produced by the peptide in combination with a cholinergic stimulant.


1993 ◽  
Vol 265 (2) ◽  
pp. G251-G257 ◽  
Author(s):  
Y. Li ◽  
C. Owyang

The mechanisms and site of action of somatostatin-induced inhibition of pancreatic enzyme secretion were investigated using different stimulants of pancreatic secretion acting on different sites in anesthetized rats. Administration of graded doses of somatostatin-14 resulted in a dose-related inhibition of pancreatic protein secretion evoked by 2-deoxy-D-glucose, a central vagal stimulant that acts by stimulating the dorsal vagal nuclei. The lowest effective dose of somatostatin-14 was 1.0 microgram.kg-1 x h-1; maximal effective dose was 25 micrograms.kg-1 x h-1, which resulted in complete inhibition of protein output. Similarly, somatostatin-14 at a dose of 25 micrograms.kg-1 x h-1 also completely inhibited pancreatic protein secretion in response to a physiological concentration of cholecystokinin octapeptide (CCK-8), which acts via a vagal afferent pathway. In contrast, pancreatic protein outputs evoked by bethanechol, which directly stimulates pancreatic muscarinic receptors, or electrical stimulation of the vagal trunk, which activates the vagal efferent pathway, were unaffected by somatostatin-14. In separate studies, we demonstrated that perivagal treatment with the sensory neurotoxin capsaicin impaired pancreatic responses to CCK-8 but had no effect on the inhibitory action of somatostatin-14 on pancreatic secretion evoked by 2-deoxy-D-glucose, ruling out an effect of somatostatin on the vagal afferent pathway. Similarly we also demonstrated that perineural capsaicin treatment of the celiac-superior mesenteric ganglia did not affect the inhibitory action of somatostatin. These findings indicate that somatostatin inhibits 2-deoxy-D-glucose- and CCK-8-evoked pancreatic enzyme secretion via a vagal pathway.(ABSTRACT TRUNCATED AT 250 WORDS)


1974 ◽  
Vol 52 (2) ◽  
pp. 198-205 ◽  
Author(s):  
R. Mongeau ◽  
Y. Couture ◽  
J. Dunnigan ◽  
J. Morisset

The secretion of the various pancreatic enzymes can be increased by hormonal and cholinergic stimulation. However, it is not yet clear among the different investigators if their synthesis remains constant or can be modified according to different metabolic conditions. The secretion and synthesis of the pancreatic proteins were then studied in parallel to evaluate if secretion triggers synthesis or both phenomenons are controlled by separate mechanisms.The approach for these studies consists mainly in a combination of in vivo and in vitro experiments. The stimulants were injected in vivo and the pancreatic secretions were collected for different periods of time. The animals were then sacrificed and protein synthesis was measured in vitro along with the amylase secreted into the incubation medium. The results show that protein synthesis is decreased during the first 15 min after a single injection or infusion of both cholecystokinin–pancreozymin (CCK–PZ) and secretin. This reduction was associated with an increase in amylase secreted into the incubation medium. However, at 30 min after the hormonal stimulation, protein synthesis is increased while secretion into the incubation medium had returned to control levels. This increase in protein synthesis lasts for at least 1 h. These results strongly suggest that pancreatic enzyme secretion and synthesis are dissociated in the early minutes following hormonal stimulation.


1991 ◽  
Vol 260 (5) ◽  
pp. G711-G719
Author(s):  
J. Mossner ◽  
R. Secknus ◽  
G. M. Spiekermann ◽  
C. Sommer ◽  
M. Biernat ◽  
...  

Prostaglandins of the E type may have a potential role in pancreatic physiology and pathophysiology. Because prostaglandins of the E type inhibit HCl secretion in parietal cells via a specific receptor by inhibition of adenylylcyclase, we studied whether a similar mechanism exists in the exocrine pancreas. Isolated rat pancreatic acini were incubated with various concentrations of secretagogues, such as cholecystokinin-octapeptide (CCK-8), bombesin, carbachol, and vasoactive intestinal peptide (VIP), in the absence or presence of prostaglandin E2 (PGE2), and amylase secretion was measured. For receptor binding studies, acini and pancreatic membranes were incubated with [3H]PGE2 and either unlabeled PGE2 or other types of prostaglandins. PGE2 (10(-13) to 10(-5) M) did not inhibit basal amylase secretion. However, CCK-8-stimulated secretion was significantly inhibited. Stimulation of secretion by bombesin, carbachol, VIP, and secretin was also inhibited by PGE2, but not as pronounced as CCK-8-stimulated secretion. The formation of inositol 1,4,5-trisphosphate induced by CCK-8 was markedly inhibited by simultaneous incubation with PGE2. Furthermore, PGE2 slightly but significantly reduced the CCK-8-induced efflux of 45Ca2+ from prelabeled acini. Intact acini and a membrane fraction bound [3H]PGE2 and this function could be equally competed by either unlabeled PGE2 or PGE1 in contrast to less-related prostaglandins such as PGF2 alpha, PGD2, and prostacyclin. We conclude that prostaglandins of the E type inhibit pancreatic enzyme secretion stimulated by various secretagogues. This function is mediated via specific receptors for PGE. With regard to CCK-8-stimulated secretion this function may be mediated by an inhibition of formation of inositol 1,4,5-trisphosphate.


1974 ◽  
Vol 52 (2) ◽  
pp. 174-182 ◽  
Author(s):  
A. R. Beaudoin ◽  
C. Marois ◽  
J. Dunnigan ◽  
J. Morisset

Pancreatic amylase secretion was studied using an in vitro system. Secretion was increased by urecholine and cholecystokinin–pancreozymin (CCK–PZ). Addition of tetracaine and dibucaine to the medium abolished secretion stimulated by urecholine and decreased by 75% that stimulated by CCK–PZ. In contrast, an increase in enzyme secretion was observed after dibutyryl cyclic AMP; this was potentiated by tetracaine added to the medium. Oxygen uptake by pieces of pancreatic tissue was not affected by tetracaine. Adenylate cyclase activity, increased in vitro when CCK–PZ was added to a pancreas homogenate, was inhibited by 15% by tetracaine at 2 mM and by 67.5% at the 10 mM concentration.From data known on biochemical reactions associated with the process of secretion and the results described in the present paper, we propose a model for the activation of the pancreatic adenylate cyclase complex. Associated to the depolarization of the acinar cell plasma membrane by urecholine and CCK–PZ and an inward movement of sodium and calcium, there is an immediate rise in adenylate cyclase activity within 10 s which is timed with the initiation of amylase secretion.


1996 ◽  
Vol 271 (3) ◽  
pp. G501-G508
Author(s):  
H. Hara ◽  
T. Nishi ◽  
H. Narakino ◽  
T. Kasai

Previously, we demonstrated that, in rats with chronic bile-pancreatic juice (BPJ) diversion, pancreatic enzyme secretion was increased after feeding animals a 25% casein fat-free diet. We determined whether cholecystokinin (CCK) or the cholinergic pathway is associated with the response of pancreatic secretion after protein ingestion in the diverted rats, using a potent CCK antagonist, MK-329 or FK-480, and a cholinergic blocker, atropine. Secretion rates of chymotrypsin and trypsin in the fasting state were very high 7 days after a BPJ diversion, and the hypersecretion of the proteases was markedly reduced with an injection of MK-329, FK-480, or atropine and was further reduced by combined injection of FK-480 and atropine. The lowered secretion of the proteases in CCK-antagonized rats was increased after oral feeding of a protein diet and after a duodenal instillation of some protein sources, especially hydrolysate of guanidinated casein (HGC). The CCK-independent increases by HGC instillation are completely depressed by atropine. In rats treated with only atropine, the lowered secretion tended to be increased by a duodenal instillation of HGC. Increases in secretion after an administration of the protein source in CCK-antagonized rats were not affected by bestatin, an inhibitor of brush-border peptidases. We conclude that the stimulatory effects of dietary protein on the pancreatic enzyme secretion partially do not depend on CCK in chronic BPJ-diverted rats and that the CCK-independent increase is atropine sensitive.


1982 ◽  
Vol 242 (4) ◽  
pp. G423-G428 ◽  
Author(s):  
M. J. Collen ◽  
V. E. Sutliff ◽  
G. Z. Pan ◽  
J. D. Gardner

In dispersed acini from rat pancreas, secretagogues that act through or mimic the action of AMP [vasoactive intestinal peptide (VIP), secretin, or 8-bromo-AMP] caused a twofold increase in amylase secretion. Secretagogues that mobilize cellular calcium (carbamylcholine, C-terminal octapeptide of cholecystokinin, bombesin, or A23187) caused a sevenfold augmentation of the actions of VIP, secretin, or 8-bromo-cAMP on enzyme secretion. Carbamylcholine and the C-terminal octapeptide of cholecystokinin also augmented the action of VIP on amylase secretion from mouse pancreatic acini. Secretagogues that mobilize cellular calcium did not alter binding of 125I-VIP, cellular cAMP, or the increase in cellular cAMP caused by VIP or secretin. Similarly, secretagogues that increase cellular cAMP did not alter 45Ca outflux or the increase in 45Ca outflux caused by carbamylcholine, C-terminal octapeptide of cholecystokinin, bombesin, or A23187. These results indicate that in dispersed acini from rat pancreas there is postreceptor modulation of the actions of VIP and secretin on enzyme secretion by secretagogues that mobilize cellular calcium and that this modulation is a major determinant of the magnitude of the effect of VIP and secretin on enzyme secretion. This modulation, in turn, reflects the ability of cellular calcium, mobilized from intracellular stores, to amplify the action of cellular cAMP on the enzyme secretory process.


Sign in / Sign up

Export Citation Format

Share Document