Protein kinase A mediates activation of ATP-sensitive K+ currents by CGRP in gallbladder smooth muscle

1994 ◽  
Vol 267 (3) ◽  
pp. G494-G499 ◽  
Author(s):  
L. Zhang ◽  
A. D. Bonev ◽  
G. M. Mawe ◽  
M. T. Nelson

The signal transduction mechanisms underlying the activation of ATP-sensitive potassium (KATP) current by calcitonin gene-related peptide (CGRP) in gallbladder smooth muscle were examined with intracellular microelectrode recording and whole cell patch-clamp techniques. In the intact gallbladder preparation, the adenylyl cyclase activator forskolin hyperpolarized the membrane potential and abolished spontaneous action potentials. This response was inhibited by the KATP channel blocker glibenclamide. CGRP (10 nM), forskolin (10 microM), the membrane-permeable adenosine 3',5'-cyclic monophosphate (cAMP) analogue adenosine 3',5'-cyclic monophosphothioate (Sp-cAMP[S]; 500 microM), and the catalytic subunit of protein kinase A (100 U/ml) activated glibenclamide-sensitive currents in enzymatically dissociated gallbladder smooth muscle cells. CGRP activation of potassium currents was prevented by dialysis of the cell cytoplasm with guanosine 5'-O-(2-thiodiphosphate) (5 mM) or a specific peptide inhibitor of protein kinase A (2.3 microM). Okadaic acid (5 microM), a phosphatase inhibitor, slowed the deactivation of the KATP current, following removal of CGRP. The results of this study indicate that CGRP hyperpolarizes gallbladder smooth muscle by elevation of cAMP and subsequent stimulation of protein kinase A.

1996 ◽  
Vol 108 (4) ◽  
pp. 315-323 ◽  
Author(s):  
A D Bonev ◽  
M T Nelson

The effects of vasoconstrictor-receptor (neuropeptide Y, alpha-adrenergic, serotonergic, histaminergic) stimulation on currents through ATP-sensitive potassium (KATP) channels in arterial smooth muscle cells were examined. Whole-cell KATP currents, activated by the synthetic KATP channel opener pinacidil or by the endogenous vasodilator, calcitonin gene-related peptide, which acts through protein kinase A, were measured in smooth muscle cells isolated from mesenteric arteries of rabbit. Stimulation of NPY-, alpha 1-, serotonin (5-HT2)-, and histamine (H1)-receptors inhibited KATP currents by 40-56%. The signal transduction pathway that links these receptors to KATP channels was investigated. An inhibitor of phospholipase C (D609) and of protein kinase C (GF 109203X) reduced the inhibitory effect of these vasoconstrictors on KATP currents from 40-56% to 11-23%. Activators of protein kinase C, a diacylglycerol analogue and phorbol 12-myristate 13-acetate (PMA), inhibited KATP currents by 87.3 and 84.2%, respectively. KATP currents, activated by calcitonin gene-related peptide, were also inhibited (47-87%) by serotonin, phenylephrine, and PMA. We propose that KATP channels in these arterial myocytes are subject to dual modulation by protein kinase C (inhibition) and protein kinase A (activation).


2014 ◽  
Vol 289 (33) ◽  
pp. 23065-23074 ◽  
Author(s):  
Sarah J. Morgan ◽  
Deepak A. Deshpande ◽  
Brian C. Tiegs ◽  
Anna M. Misior ◽  
Huandong Yan ◽  
...  

1998 ◽  
Vol 54 (2) ◽  
pp. 241-248 ◽  
Author(s):  
Detlef Bönisch ◽  
Artur-Aron Weber ◽  
Michael Wittpoth ◽  
Michael Osinski ◽  
Karsten Schrör

2001 ◽  
Vol 88 (3) ◽  
pp. 319-324 ◽  
Author(s):  
Ciro Indolfi ◽  
Eugenio Stabile ◽  
Carmela Coppola ◽  
Adriana Gallo ◽  
Cinzia Perrino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document