Mechanism of internal anal sphincter smooth muscle relaxation by phorbol 12,13-dibutyrate

2001 ◽  
Vol 280 (6) ◽  
pp. G1341-G1350 ◽  
Author(s):  
Sushanta Chakder ◽  
D. N. K. Sarma ◽  
Satish Rattan

We investigated the mechanism of the inhibitory action of phorbol 12,13-dibutyrate (PDBu), one of the typical protein kinase C (PKC) activators, in in vitro smooth muscle strips and in isolated smooth muscle cells of the opossum internal anal sphincter (IAS). The inhibitory action of PDBu on IAS smooth muscle (observed in the presence of guanethidine + atropine) was partly attenuated by tetrodotoxin, suggesting that a part of the inhibitory action of PDBu is via the nonadrenergic, noncholinergic neurons. A major part of the action of PDBu in IAS smooth muscle was, however, via its direct action at the smooth muscle cells, accompanied by a decrease in free intracellular Ca2+ concentration ([Ca2+]i) and inhibition of PKC translocation. PDBu-induced IAS smooth muscle relaxation was unaffected by agents that block Ca2+ mobilization and Na+-K+-ATPase. The PDBu-induced fall in basal IAS smooth muscle tone and [Ca2+]i resembled that induced by the Ca2+ channel blocker nifedipine and were reversed specifically by the Ca2+ channel activator BAY K 8644. We speculate that a major component of the relaxant action of PDBu in IAS smooth muscle is caused by the inhibition of Ca2+ influx and of PKC translocation to the membrane. The specific role of PKC downregulation and other factors in the phorbol ester-mediated fall in basal IAS smooth muscle tone remain to be determined.

1999 ◽  
Vol 277 (1) ◽  
pp. G152-G160 ◽  
Author(s):  
Ya-Ping Fan ◽  
Sushanta Chakder ◽  
Satish Rattan

Cholera toxin (CTX), an activator of Gsprotein, is an important pharmacological tool in G protein research. The effect and the mechanism of action of CTX in the gastrointestinal smooth muscle, including the internal anal sphincter (IAS), are not known. The present investigation was carried out to examine the effects of CTX on the signal transduction associated with the adenylate cyclase (AC) pathway on the basal tone of the IAS smooth muscle. CTX caused a prompt and dose-dependent fall in the basal tone of the IAS that was not affected by the neurotoxins TTX and ω-conotoxin or the nitric oxide synthase inhibitor NG-nitro-l-arginine. The cyclooxygenase inhibitor indomethacin, cAMP-dependent protein kinase inhibitor Rp-8-bromoadenosine 3′,5′ cyclic monophosphorothioate inhibited CTX-induced IAS smooth muscle relaxation. Furthermore, CTX caused a concentration-dependent relaxation of the isolated smooth muscle cells (SMC) of the IAS, which was blocked by Gsα antibody (Gsα-Ab). The IAS smooth muscle relaxation was accompanied with an increase in the GTPase activity that was also specifically blocked by Gsα-Ab. We conclude that a major part of the inhibitory action of CTX in the IAS is via the direct response of the SMC that is linked with Gsprotein to the AC pathway. A part of the inhibitory action of CTX on the smooth muscle occurs via the activation of cyclooxygenase pathway. The relative contribution of such actions of CTX in the smooth muscle in the gastrointestinal motility disturbances following cholera infection remains to be determined.


2003 ◽  
Vol 285 (3) ◽  
pp. G547-G555 ◽  
Author(s):  
Kuldip S. Banwait ◽  
Satish Rattan

Effects of activation of β3-adrenoceptor (β3-AR) have not been determined in the spontaneously tonic smooth muscle of the internal anal sphincter (IAS). The effects of disodium (R,R)-5-[2-[2-3-chlorophenyl)-2-hydroxyethyl]-amino]propyl]-1,3-benzodioxole-2,2-dicarboxylate (CL 316243), a selective β3-AR agonist, on the basal smooth muscle tone and direct release of nitric oxide (NO) by circular smooth muscle strips of the opossum IAS were determined. We also examined the presence of endothelial nitric oxide synthase (eNOS) protein by Western blot studies. CL 316243 produced a concentration-dependent relaxation of the smooth muscle that remained unmodified by different neurohumoral antagonists. The smooth muscle relaxation by CL 316243 was selectively antagonized by L 748337, a β3-AR antagonist. Such relaxation was several times longer than by isoproterenol. The effect of CL 316243 was significantly attenuated by a nonselective NOS inhibitor Nω-nitro-l-arginine (l-NNA) and by putative inhibitor of eNOS l- N5-(1-iminoethyl)-ornithine dihydrochloride (l-NIO). Inhibitors of iNOS [ N-(3-aminomethyl)benzyl acetamide 2HCl] and nNOS {1-[2-(trifluoromethylphenyl)imidazole]} had no effect on this relaxation. Relaxation of the IAS smooth muscle induced by CL 316243 was accompanied by an increased release of NO; this was attenuated by l-NNA and l-NIO. In addition, Western blot studies revealed the presence of eNOS in the circular smooth muscle of the IAS. These data demonstrate potent and protracted IAS smooth muscle relaxation by β3-AR activation, which is partly transduced via NOS, possibly smooth muscle eNOS. Multiple signal-transduction pathways including NOS activation may explain the characteristic IAS relaxation by β3-AR activation. The studies may have therapeutic implications in anorectal motility disorders.


2019 ◽  
Vol 32 (3) ◽  
Author(s):  
Caroline A. Cobine ◽  
Karen I. Hannigan ◽  
Megan McMahon ◽  
Emer P. Ni Bhraonain ◽  
Salah A. Baker ◽  
...  

1989 ◽  
Vol 257 (4) ◽  
pp. H1315-H1320
Author(s):  
J. L. Mehta ◽  
D. L. Lawson ◽  
W. W. Nichols ◽  
P. Mehta

To determine the influence of polymorphonuclear leukocytes (PMNLs) on vascular smooth muscle tone, isolated human PMNLs (10(4)–10(7) cells/ml) were suspended in a tissue bath with precontracted rat aortic rings with or without endothelium. PMNLs in low concentrations (10(4) and 10(5) cells/ml) caused a mild contraction, and in higher concentrations (10(6) and 10(7) cells/ml) caused a modest relaxation of aortic rings with intact endothelium. In contrast, PMNLs caused a potent concentration-dependent relaxation of deendothelialized rings (P less than 0.01 compared with rings with intact endothelium). The PMNL-induced vascular smooth muscle relaxation was abolished by both hemoglobin and methylene blue and potentiated by both superoxide dismutase and captopril. Although suspension of PMNLs caused release of eicosanoids, thromboxane A2 and prostacyclin, from rings with intact endothelium, neither indomethacin nor the TxA2-endoperoxide receptor antagonist SQ 29548 modified the effects of PMNLs on vascular smooth muscle tone. These observations suggest that unstimulated PMNLs generate a smooth muscle relaxant, which has biological characteristics similar to the endothelium-derived relaxing factor. Since the activity of this PMNL-derived smooth muscle relaxant is more pronounced in deendothelialized vascular segments, it appears that endothelium provides a barrier against vasorelaxation by high concentrations of PMNLs.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Jagmohan Singh ◽  
Ipsita Mohanty ◽  
Sankar Addya ◽  
Benjamin Phillips ◽  
Hwan Mee Yong ◽  
...  

2010 ◽  
Vol 299 (2) ◽  
pp. G430-G439 ◽  
Author(s):  
Shreya Raghavan ◽  
Eiichi A. Miyasaka ◽  
Mohamed Hashish ◽  
Sita Somara ◽  
Robert R. Gilmont ◽  
...  

We have previously developed bioengineered three-dimensional internal anal sphincter (IAS) rings from circular smooth muscle cells isolated from rabbit and human IAS. We provide proof of concept that bioengineered mouse IAS rings are neovascularized upon implantation into mice of the same strain and maintain concentric smooth muscle alignment, phenotype, and IAS functionality. Rings were bioengineered by using smooth muscle cells from the IAS of C57BL/6J mice. Bioengineered mouse IAS rings were implanted subcutaneously on the dorsum of C57BL/6J mice along with a microosmotic pump delivering fibroblast growth factor-2. The mice remained healthy during the period of implantation, showing no external signs of rejection. Mice were killed 28 days postsurgery and implanted IAS rings were harvested. IAS rings showed muscle attachment, neovascularization, healthy color, and no external signs of infection or inflammation. Assessment of force generation on harvested IAS rings showed the following: 1) spontaneous basal tone was generated in the absence of external stimulation; 2) basal tone was relaxed by vasoactive intestinal peptide, nitric oxide donor, and nifedipine; 3) acetylcholine and phorbol dibutyrate elicited rapid-rising, dose-dependent, sustained contractions repeatedly over 30 min without signs of muscle fatigue; and 4) magnitudes of potassium chloride-induced contractions were 100% of peak maximal agonist-induced contractions. Our preliminary results confirm the proof of concept that bioengineered rings are neovascularized upon implantation. Harvested rings maintain smooth muscle alignment and phenotype. Our physiological studies confirm that implanted rings maintain 1) overall IAS physiology and develop basal tone, 2) integrity of membrane ionic characteristics, and 3) integrity of membrane associated intracellular signaling transduction pathways for contraction and relaxation by responding to cholinergic, nitrergic, and VIP-ergic stimulation. IAS smooth muscle tissue could thus be bioengineered for the purpose of implantation to serve as a potential graft therapy for dysfunctional internal anal sphincter in fecal incontinence.


2015 ◽  
Vol 148 (4) ◽  
pp. S-303-S-304 ◽  
Author(s):  
Jagmohan Singh ◽  
Sumit Kumar ◽  
Benjamin Phillips ◽  
Satish C. Rattan

Sign in / Sign up

Export Citation Format

Share Document