Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin

2007 ◽  
Vol 292 (2) ◽  
pp. H1058-H1064 ◽  
Author(s):  
Ping Olesen ◽  
Kirsten Nguyen ◽  
Lise Wogensen ◽  
Thomas Ledet ◽  
Lars Melholt Rasmussen

Arterial medial calcifications occur often in diabetic individuals as part of the diabetic macroangiopathy. The pathogenesis is unknown, but the presence of calcifications predicts risk of cardiovascular events. We examined the effects of insulin on calcifying smooth muscle cells in vitro and measured the expression of the bone-related molecule osteoprotegerin (OPG). Human vascular smooth muscle cells (VSMCs) were grown from aorta from kidney donors. Induction of calcification was performed with β-glycerophosphate. The influence of insulin (200 μU/ml or 1,000 μU/ml) on calcification was judged by measuring calcium content in the cell layer and by von Kossa staining. OPG was measured in the medium by ELISA. Histochemistry was used for determination of alkaline phosphatase (ALP). Bone sialoprotein (BSP) and OPG mRNA expressions were done by RT-PCR. β-Glycerophosphate was able to induce calcification in human smooth muscle cells from a series of donors after variable time in culture. Decreased OPG amounts were observed from the cells during the accelerated calcification phase. High dose of insulin (1,000 μU/ml) accelerated the calcification, whereas lower concentrations (200 μU/ml) did not. Calcified cells expressed ALP and BSP activity in high levels. In conclusion, high concentration of insulin enhances in vitro-induced calcification in VSMCs. Altered OPG levels during the calcification raise the possibility that OPG may have a potent function in regulating the calcification process or it may represent a consequence of mineralization. Effects of insulin and modulations by OPG on the calcification process in arterial cells may play a role in the development of calcifications as part of the diabetic macroangiopathy.

1997 ◽  
Vol 8 (3/4) ◽  
pp. 189-204 ◽  
Author(s):  
Rainer Voisard ◽  
Stefan Koschnick ◽  
Regine Baur ◽  
Ulrich Vogel ◽  
Torsten Mattfeldt ◽  
...  

1994 ◽  
Vol 269 (11) ◽  
pp. 8504-8509
Author(s):  
K.A. Pritchard ◽  
M.K. O'Banion ◽  
J.M. Miano ◽  
N. Vlasic ◽  
U.G. Bhatia ◽  
...  

2005 ◽  
Vol 108 (6) ◽  
pp. 523-530 ◽  
Author(s):  
Giovanna CASTOLDI ◽  
Serena REDAELLI ◽  
Willy M. M. van de GREEF ◽  
Cira R. T. di GIOIA ◽  
Giuseppe BUSCA ◽  
...  

Ang II (angiotensin II) has multiple effects on vascular smooth muscle cells through the modulation of different classes of genes. Using the mRNA differential-display method to investigate gene expression in rat aortic smooth muscle cells in culture in response to 3 h of Ang II stimulation, we observed that Ang II down-regulated the expression of a member of the family of transmembrane receptors for Wnt proteins that was identified as Fzd2 [Fzd (frizzled)-2 receptor]. Fzds are a class of highly conserved genes playing a fundamental role in the developmental processes. In vitro, time course experiments demonstrated that Ang II induced a significant increase (P<0.05) in Fzd2 expression after 30 min, whereas it caused a significant decrease (P<0.05) in Fzd2 expression at 3 h. A similar rapid up-regulation after Ang II stimulation for 30 min was evident for TGFβ1 (transforming growth factor β1; P<0.05). To investigate whether Ang II also modulated Fzd2 expression in vivo, exogenous Ang II was administered to Sprague–Dawley rats (200 ng·kg−1 of body weight·min−1; subcutaneously) for 1 and 4 weeks. Control rats received normal saline. After treatment, systolic blood pressure was significantly higher (P<0.01), whereas plasma renin activity was suppressed (P<0.01) in Ang II- compared with the saline-treated rats. Ang II administration for 1 week did not modify Fzd2 expression in aorta of Ang II-treated rats, whereas Ang II administration for 4 weeks increased Fzd2 mRNA expression (P<0.05) in the tunica media of the aorta, resulting in a positive immunostaining for fibronectin at this time point. In conclusion, our data demonstrate that Ang II modulates Fzd2 expression in aortic smooth muscle cells both in vitro and in vivo.


2015 ◽  
Vol 37 (5) ◽  
pp. 1817-1829 ◽  
Author(s):  
Kai Huang ◽  
Zhi-Qiang Yan ◽  
Dan Zhao ◽  
Si-Guo Chen ◽  
Li-Zhi Gao ◽  
...  

Background/Aims: Physiological mechanical stretch in vivo helps to maintain the quiescent contractile differentiation of vascular smooth muscle cells (VSMCs), but the underlying mechanisms are still unclear. Here, we investigated the effects of SIRT1 in VSMC differentiation in response to mechanical cyclic stretch. Methods and Results: Rat VSMCs were subjected to 10%-1.25Hz-cyclic stretch in vitro using a FX-4000T system. The data indicated that the expression of contractile markers, including α-actin, calponin and SM22α, was significantly enhanced in VSMCs that were subjected to cyclic stretch compared to the static controls. The expression of SIRT1 and FOXO3a was increased by the stretch, but the expression of FOXO4 was decreased. Decreasing SIRT1 by siRNA transfection attenuated the stretch-induced expression of contractile VSMC markers and FOXO3a. Furthermore, increasing SIRT1 by either treatment with activator resveratrol or transfection with a plasmid to induce overexpression increased the expression of FOXO3a and contractile markers, and decreased the expression of FOXO4 in VSMCs. Similar trends were observed in VSMCs of SIRT1 (+/-) knockout mice. The overexpression of FOXO3a promoted the expression of contractile markers in VSMCs, while the overexpression of FOXO4 demonstrated the opposite effect. Conclusion: Our results indicated that physiological cyclic stretch promotes the contractile differentiation of VSMCs via the SIRT1/FOXO pathways and thus contributes to maintaining vascular homeostasis.


1999 ◽  
Vol 250 (1) ◽  
pp. 174-186 ◽  
Author(s):  
Charles Cappadona ◽  
Eileen M. Redmond ◽  
Nicholas G. Theodorakis ◽  
Iain H. McKillop ◽  
Richard Hendrickson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document