scholarly journals Systemic influences contribute to prolonged microvascular rarefaction after brain irradiation: a role for endothelial progenitor cells

2014 ◽  
Vol 307 (6) ◽  
pp. H858-H868 ◽  
Author(s):  
Nicole M. Ashpole ◽  
Junie P. Warrington ◽  
Matthew C. Mitschelen ◽  
Han Yan ◽  
Danuta Sosnowska ◽  
...  

Whole brain radiation therapy (WBRT) induces profound cerebral microvascular rarefaction throughout the hippocampus. Despite the vascular loss and localized cerebral hypoxia, angiogenesis fails to occur, which subsequently induces long-term deficits in learning and memory. The mechanisms underlying the absence of vessel recovery after WBRT are unknown. We tested the hypotheses that vascular recovery fails to occur under control conditions as a result of loss of angiogenic drive in the circulation, chronic tissue inflammation, and/or impaired endothelial cell production/recruitment. We also tested whether systemic hypoxia, which is known to promote vascular recovery, reverses these chronic changes in inflammation and endothelial cell production/recruitment. Ten-week-old C57BL/6 mice were subjected to a clinical series of fractionated WBRT: 4.5-Gy fractions 2 times/wk for 4 wk. Plasma from radiated mice increased in vitro endothelial cell proliferation and adhesion compared with plasma from control mice, indicating that WBRT did not suppress the proangiogenic drive. Analysis of cytokine levels within the hippocampus revealed that IL-10 and IL-12(p40) were significantly increased 1 mo after WBRT; however, systemic hypoxia did not reduce these inflammatory markers. Enumeration of endothelial progenitor cells (EPCs) in the bone marrow and circulation indicated that WBRT reduced EPC production, which was restored with systemic hypoxia. Furthermore, using a bone marrow transplantation model, we determined that bone marrow-derived endothelial-like cells home to the hippocampus after systemic hypoxia. Thus, the loss of production and homing of EPCs have an important role in the prolonged vascular rarefaction after WBRT.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ingar Seemann ◽  
Johannes A. M. te Poele ◽  
Saske Hoving ◽  
Fiona A. Stewart

Background. Radiotherapy is commonly used to treat breast and thoracic cancers but it also causes delayed microvascular damage and increases the risk of cardiac mortality. Endothelial cell proliferation and revascularization are crucial to restore microvasculature damage and maintain function of the irradiated heart. We have therefore examined the potential of bone marrow-derived endothelial progenitor cells (BM-derived EPCs) for restoration of radiation-induced microvascular damage. Material & Methods. 16 Gy was delivered to the heart of adult C57BL/6 mice. Mice were injected with BM-derived EPCs, obtained from Eng+/+ or Eng+/− mice, 16 weeks and 28 weeks after irradiation. Morphological damage was evaluated at 40 weeks in transplanted mice, relative to radiation only and age-matched controls. Results. Cardiac irradiation decreased microvascular density and increased endothelial damage in surviving capillaries (decrease alkaline phosphatase expression and increased von Willebrand factor). Microvascular damage was not diminished by treatment with BM-derived EPCs. However, BM-derived EPCs from both Eng+/+ and Eng+/− mice diminished radiation-induced collagen deposition. Conclusion. Treatment with BM-derived EPCs did not restore radiation-induced microvascular damage but it did inhibit fibrosis. Endoglin deficiency did not impair this process.


2009 ◽  
Vol 182 (4S) ◽  
pp. 1898-1905 ◽  
Author(s):  
Arun K. Sharma ◽  
Natalie J. Fuller ◽  
Ryan R. Sullivan ◽  
Noreen Fulton ◽  
Partha V. Hota ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Richard Longeras ◽  
Krysten Farjo ◽  
Michael Ihnat ◽  
Jian-Xing Ma

Proliferative diabetic retinopathy is characterized by pathological retinal neovascularization, mediated by both angiogenesis (involving mature endothelial cells) and vasculogenesis (involving bone marrow-derived circulating endothelial progenitor cells (EPCs)). Pigment epithelium-derived factor (PEDF) contains an N-terminal 34-amino acid peptide (PEDF-34) that has antiangiogenic properties. Herein, we present a novel finding that PEDF-34 also possesses antivasculogenic activity. In the oxygen-induced retinopathy (OIR) model using transgenic mice that have Tie2 promoter-driven GFP expression, we quantified Tie2GFP+cells in bone marrow and peripheral blood by fluorescence-activated cell sorting (FACS). OIR significantly increased the number of circulating Tie2-GFP+at P16, correlating with the peak progression of neovascularization. Daily intraperitoneal injections of PEDF-34 into OIR mice decreased the number of Tie2-GFP+cells in the circulation at P16 by 65% but did not affect the number of Tie2-GFP+cells in the bone marrow. These studies suggest that PEDF-34 attenuates EPC mobilization from the bone marrow into the blood circulation during retinal neovascularization.


2008 ◽  
Vol 215 (1) ◽  
pp. 234-242 ◽  
Author(s):  
Tomoyuki Matsumoto ◽  
Yutaka Mifune ◽  
Atsuhiko Kawamoto ◽  
Ryosuke Kuroda ◽  
Taro Shoji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document