scholarly journals Effects of nitrite infusion on skeletal muscle vascular control during exercise in rats with chronic heart failure

2015 ◽  
Vol 309 (8) ◽  
pp. H1354-H1360 ◽  
Author(s):  
Angela A. Glean ◽  
Scott K. Ferguson ◽  
Clark T. Holdsworth ◽  
Trenton D. Colburn ◽  
Jennifer L. Wright ◽  
...  

Chronic heart failure (CHF) reduces nitric oxide (NO) bioavailability and impairs skeletal muscle vascular control during exercise. Reduction of NO2− to NO may impact exercise-induced hyperemia, particularly in muscles with pathologically reduced O2 delivery. We tested the hypothesis that NO2− infusion would increase exercising skeletal muscle blood flow (BF) and vascular conductance (VC) in CHF rats with a preferential effect in muscles composed primarily of type IIb + IId/x fibers. CHF (coronary artery ligation) was induced in adult male Sprague-Dawley rats. After a >21-day recovery, mean arterial pressure (MAP; carotid artery catheter) and skeletal muscle BF (radiolabeled microspheres) were measured during treadmill exercise (20 m/min, 5% incline) with and without NO2− infusion. The myocardial infarct size (35 ± 3%) indicated moderate CHF. NO2− infusion increased total hindlimb skeletal muscle VC (CHF: 0.85 ± 0.09 ml·min−1·100 g−1·mmHg−1 and CHF + NO2−: 0.93 ± 0.09 ml·min−1·100 g−1·mmHg−1, P < 0.05) without changing MAP (CHF: 123 ± 4 mmHg and CHF + NO2−: 120 ± 4 mmHg, P = 0.17). Total hindlimb skeletal muscle BF was not significantly different (CHF: 102 ± 7 and CHF + NO2−: 109 ± 7 ml·min−1·100 g−1 ml·min−1·100 g−1, P > 0.05). BF increased in 6 (∼21%) and VC in 8 (∼29%) of the 28 individual muscles and muscle parts. Muscles and muscle portions exhibiting greater BF and VC after NO2− infusion comprised ≥63% type IIb + IId/x muscle fibers. These data demonstrate that NO2− infusion can augment skeletal muscle vascular control during exercise in CHF rats. Given the targeted effects shown herein, a NO2−-based therapy may provide an attractive “needs-based” approach for treatment of the vascular dysfunction in CHF.

2014 ◽  
Vol 39 (3) ◽  
pp. 299-307 ◽  
Author(s):  
Clark T. Holdsworth ◽  
Steven W. Copp ◽  
Daniel M. Hirai ◽  
Scott K. Ferguson ◽  
Gabrielle E. Sims ◽  
...  

Impaired vasomotor control in chronic heart failure (CHF) is due partly to decrements in nitric oxide synthase (NOS) mediated vasodilation. Exercising muscle blood flow (BF) is augmented with polyunsaturated fatty acid (PUFA) supplementation via fish oil (FO) in healthy rats. We hypothesized that FO would augment exercising muscle BF in CHF rats via increased NO-bioavailability. Myocardial infarction (coronary artery ligation) induced CHF in Sprague–Dawley rats which were subsequently randomized to dietary FO (20% docosahexaenoic acid, 30% eicosapentaenoic acid, n = 15) or safflower oil (SO, 5%, n = 10) for 6–8 weeks. Mean arterial pressure (MAP), blood [lactate], and hindlimb muscles BF (radiolabeled microspheres) were determined at rest, during treadmill exercise (20 m·min−1, 5% incline) and exercise + NG-nitro-l-arginine-methyl-ester (l-NAME) (a nonspecific NOS inhibitor). FO did not change left ventricular end-diastolic pressure (SO: 14 ± 2; FO: 11 ± 1 mm Hg, p > 0.05). During exercise, MAP (SO: 128 ± 3; FO: 132 ± 3 mm Hg) and blood [lactate] (SO: 3.8 ± 0.4; FO: 4.6 ± 0.5 mmol·L−1) were not different (p > 0.05). Exercising hindlimb muscle BF was lower in FO than SO (SO: 120 ± 11; FO: 93 ± 4 mL·min−1·100 g−1, p < 0.05) but was not differentially affected by l-NAME. Specifically, 17 of 28 individual muscle BF’s were lower (p < 0.05) in FO demonstrating that PUFA supplementation with FO in CHF rats does not augment muscle BF during exercise but may lower metabolic cost.


2003 ◽  
Vol 95 (3) ◽  
pp. 1055-1062 ◽  
Author(s):  
Troy E. Richardson ◽  
Casey A. Kindig ◽  
Timothy I. Musch ◽  
David C. Poole

Chronic heart failure (CHF) reduces muscle blood flow at rest and during exercise and impairs muscle function. Using intravital microscopy techniques, we tested the hypothesis that the speed and amplitude of the capillary red blood cell (RBC) velocity ( VRBC) and flux (FRBC) response to contractions would be reduced in CHF compared with control (C) spinotrapezius muscle. The proportion of capillaries supporting continuous RBC flow was less ( P < 0.05) in CHF (0.66 ± 0.04) compared with C (0.84 ± 0.01) muscle at rest and was not significantly altered with contractions. At rest, VRBC (C, 270 ± 62; CHF, 179 ± 14 μm/s) and FRBC (C, 22.4 ± 5.5 vs. CHF, 15.2 ± 1.2 RBCs/s) were reduced (both P < 0.05) in CHF vs. C muscle. Contractions significantly (both P < 0.05) elevated VRBC (C, 428 ± 47 vs. CHF, 222 ± 15 μm/s) and FRBC (C, 44.3 ± 5.5 vs. CHF, 24.0 ± 1.2 RBCs/s) in C and CHF muscle; however, both remained significantly lower in CHF than C. The time to 50% of the final response was slowed (both P < 0.05) in CHF compared with C for both VRBC (C, 8 ± 4; CHF, 56 ± 11 s) and FRBC (C, 11 ± 3; CHF, 65 ± 11 s). Capillary hematocrit increased with contractions in C and CHF muscle but was not different ( P > 0.05) between CHF and C. Thus CHF impairs diffusive and conductive O2 delivery across the rest-to-contractions transition in rat skeletal muscle, which may help explain the slowed O2 uptake on-kinetics manifested in CHF patients at exercise onset.


2014 ◽  
Vol 2 (1) ◽  
pp. 32-44 ◽  
Author(s):  
Timothy Musch ◽  
◽  
Gabrielle Sims ◽  
Steven Copp ◽  
Daniel Hirai ◽  
...  

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Chang Yin ◽  
Fadi N Salloum ◽  
Rakesh C Kukreja

BACKGROUND: Due to its short length (~24 nt) and non-coding nature, microRNA (miRNA) used to be regarded as “evolutionary transcriptional debris”. Recent evidence suggests that miRNA is a novel regulator for transcription and translation. It is known that brief episodes of ischemia during ischemic preconditioning (IPC) trigger complex genetic pro-survival program that results in modulation of several key proteins involved in protection against I/R injury. We hypothesized that miRNA synthesized during IPC is the potential mediator of such protection. METHODS / RESULTS : Hearts were isolated from 3 groups (n = 6/group) of adult ICR mice and subjected to the following treatments in Langendorff mode: 120 min of perfusion with Krebs-Henseleit buffer (control); 30 min global ischemia followed by 1 hr reperfusion (I/R); 2 cycles of 30 sec ischemia and 90 sec reperfusion followed by 30 min ischemia and 1 hr reperfusion (IPC). Infarct size (IS) was measured by triphenyl tetrazolium staining. IPC in the Langendorff model reduced IS from 29.7 ± 2.1% in the I/R hearts to 9.1 ± 1.8 % in the IPC group. This protection was associated with a significant induction of miRNA-1 (162 ± 13%), miRNA-21 (118 ± 6%), and miRNA-24 (46 ± 12%). To test its protective role, miRNA was extracted from 6 hearts following the IPC protocol; and then injected in vivo into the left ventricle wall in another group of 6 mice. Forty-eight hrs later, these mice were subjected to I/R injury in vivo by left coronary artery ligation for 30 min followed by reperfusion for 24 hr. In addition, a subset of mice was treated with miRNA inhibitors (methylated antisense miRNA) in conjunction with miRNA from IPC hearts. The results show that miRNA extracted from the IPC hearts reproduced a protective phenotype with significantly lower infarction (18.8 ± 2.5 %) in vivo as compared to saline-treated control (37.5 ± 2.2%). This protective effect was totally abolished by specific inhibitors of miRNA-1 and miRNA-21 (IS: 43.7 ± 2.1%). CONCLUSION : miRNA extracted from preconditioned hearts shows a protective role against I/R injury. The detection of miRNA in preconditioned hearts offers a novel strategy in cardioprotection. Further studies are needed to identify the gene targets by which miRNA generate protective phenotype.


2003 ◽  
Vol 285 (4) ◽  
pp. H1660-H1667 ◽  
Author(s):  
Yu Wang ◽  
Kaushik P. Patel ◽  
Kurtis G. Cornish ◽  
Keith M. Channon ◽  
Irving H. Zucker

We hypothesized that gene transfer of neuronal nitric oxide synthase (nNOS) into the rostral ventrolateral medulla (RVLM) improves baroreflex function in rats with chronic heart failure (CHF). Six to eight weeks after coronary artery ligation, rats showed hemodynamic signs of CHF. A recombinant adenovirus, either Ad.nNOS or Ad.β-Gal, was transfected into the RVLM. nNOS expression in the RVLM was confirmed by Western blot analysis, NADPH-diaphorase, and immunohistochemical staining. We studied baroreflex control of the heart rate (HR) and renal sympathetic nerve activity (RSNA) in the anesthetized state 3 days after gene transfer by intravenous injections of phenylephrine and nitroprusside. Baroreflex sensitivity was depressed for HR and RSNA regulation in CHF rats (2.0 ± 0.3 vs. 0.8 ± 0.2 beats · min–1 · mmHg–1, P < 0.01 and 3.8 ± 0.3 vs. 1.2 ± 0.1% max/mmHg, P < 0.01, respectively). Ad.nNOS transfer into RVLM significantly increased the HR and RSNA ranges (152 ± 19 vs. 94 ± 12 beats/min, P < 0.05 and 130 ± 16 vs. 106 ± 5% max/mmHg, P < 0.05) compared with the Ad.β-Gal in CHF rats. Ad.nNOS also improved the baroreflex gain for the control of HR and RSNA (1.8 ± 0.2 vs. 0.8 ± 0.2 beats · min–1 · mmHg–1, P < 0.01 and 2.6 ± 0.2 vs. 1.2 ± 0.1% max/mmHg, P < 0.01). In sham-operated rats, we found that Ad.nNOS transfer enhanced the HR range compared with Ad.β-Gal gene transfer (188 ± 15 vs. 127 ± 14 beats/min, P < 0.05) but did not alter any other parameter. This study represents the first demonstration of altered baroreflex function following increases in central nNOS in the CHF state. We conclude that delivery of Ad.nNOS into the RVLM improves baroreflex function in rats with CHF.


2017 ◽  
Vol 122 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Trenton D. Colburn ◽  
Scott K. Ferguson ◽  
Clark T. Holdsworth ◽  
Jesse C. Craig ◽  
Timothy I. Musch ◽  
...  

Exercise intolerance characteristic of diseases such as chronic heart failure (CHF) and diabetes is associated with reduced nitric oxide (NO) bioavailability from nitric oxide synthase (NOS), resulting in an impaired microvascular O2 driving pressure (Po2 mv; O2 delivery/O2 utilization) and metabolic control. Infusions of the potent NO donor sodium nitroprusside augment NO bioavailability yet decrease mean arterial pressure (MAP) thereby reducing its potential efficacy for patient populations. To eliminate or reduce hypotensive sequelae, [Formula: see text] was superfused onto the spinotrapezius muscle. It was hypothesized that local [Formula: see text] administration would elevate resting Po2 mv and slow Po2 mv kinetics [increased time constant (τ) and mean response time (MRT)] following the onset of muscle contractions without decreasing MAP. In 12 anesthetized male Sprague-Dawley rats, Po2 mv of the circulation-intact spinotrapezius muscle was measured by phosphorescence quenching during 180 s of electrically induced twitch contractions (1 Hz) before and after superfusion of sodium nitrite (NaNO2 30 mM). [Formula: see text] superfusion elevated resting Po2 mv (control: 28.4 ± 1.1 vs. [Formula: see text]: 31.6 ± 1.2 mmHg; P ≤ 0.05), τ (control: 12.3 ± 1.2 vs. [Formula: see text]: 19.7 ± 2.2 s; P ≤ 0.05), and MRT (control: 19.3 ± 1.9 vs. [Formula: see text]: 25.6 ± 3.3 s; P ≤ 0.05). Importantly, these effects occurred in the absence of any reduction in MAP (103 ± 4 vs. 105 ± 4 mmHg, pre- and postsuperfusion respectively; P > 0.05). These results indicate that [Formula: see text] supplementation delivered to the muscle directly through [Formula: see text] superfusion enhances the blood-myocyte oxygen driving pressure without compromising MAP at rest and following the onset of muscle contraction. This strategy has substantial clinical utility for a range of ischemic conditions. NEW & NOTEWORTHY Ischemic conditions as diverse as chronic heart failure (CHF) and frostbite inflict tissue damage via inadequate O2 delivery. Herein we demonstrate that direct application of sodium nitrite enhances the O2 supply-O2 demand relationship, raising microvascular O2 pressure in healthy skeletal muscle. This therapeutic action of nitrite-derived nitric oxide occurred without inducing systemic hypotension and has the potential to relieve focal ischemia and preserve tissue vitality by enhancing O2 delivery.


Heart ◽  
2001 ◽  
Vol 85 (5) ◽  
pp. 508-513
Author(s):  
W A Parsonage ◽  
D Hetmanski ◽  
A J Cowley

OBJECTIVETo characterise the central and regional haemodynamic effects of insulin in patients with chronic heart failure.DESIGNSingle blind, placebo controlled study.SETTINGUniversity teaching hospital.PATIENTSTen patients with stable chronic heart failure.INTERVENTIONSHyperinsulinaemic euglycaemic clamp and non-invasive haemodynamic measurements.MAIN OUTCOME MEASURESChange in resting heart rate, blood pressure, cardiac output, and regional splanchnic and skeletal muscle blood flow.RESULTSInsulin infusion led to a dose dependent increase in skeletal muscle blood flow of 0.36 (0.13) and 0.73 (0.14) ml/dl/min during low and high dose insulin infusions (p < 0.05 and p < 0.005 v placebo, respectively). Low and high dose insulin infusions led to a fall in heart rate of 4.6 (1.4) and 5.1 (1.3) beats/min (p < 0.05 and p < 0.005 v placebo, respectively) and a modest increase in cardiac output. There was no significant change in superior mesenteric artery blood flow.CONCLUSIONIn patients with chronic heart failure insulin is a selective skeletal muscle vasodilator that leads to increased muscle perfusion primarily through redistribution of regional blood flow rather than by increased cardiac output. These results provide a rational haemodynamic explanation for the apparent beneficial effects of insulin infusion in the setting of heart failure.


2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Scott Ferguson ◽  
Clark Holdsworth ◽  
Jennifer Wright ◽  
Karen Hageman ◽  
Timothy Musch ◽  
...  

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Scott M Filippone ◽  
Sean K Roh ◽  
Fadi N Salloum ◽  
Rakesh C Kukreja ◽  
Anindita Das

Background: The selective inhibitor of mammalian target of rapamycin (mTOR), rapamycin (RAPA), has been shown to exert preconditioning-like cardioprotective effects against ischemia/reperfusion (I/R) injury. Two distinct mTOR complexes (mTORC1 and mTORC2) differentially regulate cardiomyocyte apoptosis and tissue damage following myocardial infarction. We hypothesized that reperfusion therapy with RAPA would reduce myocardial infarct size through differential modulation of mTOR complexes and MAP kinases. Methods and Results: Adult C57BL mice were subjected to 30 min of ischemia via left anterior descending coronary artery ligation followed by reperfusion for 24 hr. RAPA (0.25 mg/kg) or 10% DMSO (volume-matched control) was administered via intra-cardiac injection at the onset of reperfusion. Post I/R survival (90%) and cardiac function (fractional shortening, FS: 26.9±2.6%) were improved in RAPA-treated mice compared to control (survival: 60%, FS:16.7±3.2%). Additionally, RAPA caused significant reduction in myocardial infarct size (Fig. 1A), measured by tetrazolium chloride staining, and apoptosis (Fig. 1B) in peri-infarct regions, assessed by TUNEL staining. Western blot analysis revealed that RAPA restored Akt473 phosphorylation (target of mTORC2), but reduced ribosomal protein S6 phosphorylation (target of mTORC1) following I/R injury (Fig. 1C). The protective effect of RAPA was associated with increased phosphorylation of ERK1/2 and decreased phosphorylation of P38 (Fig. 1D). RAPA also attenuated pro-apoptotic protein Bax, in concert with increased pro-survival Bcl2 to Bax ratio (Fig. 1E). Conclusion: Reperfusion therapy with RAPA protects hearts against I/R injury by selective activation of mTORC2 and ERK with concurrent inhibition of mTOC1 and P38. We propose that RAPA could be a novel treatment strategy to modulate mTOR complexes and MAP kinase signaling for attenuation of reperfusion injury in the heart.


Sign in / Sign up

Export Citation Format

Share Document