Abstract 411: Endogenous miRNA Induced By Ischemic Preconditioning Reduces Myocardial Infarct Size following Ischemia/Reperfusion In Mice

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Chang Yin ◽  
Fadi N Salloum ◽  
Rakesh C Kukreja

BACKGROUND: Due to its short length (~24 nt) and non-coding nature, microRNA (miRNA) used to be regarded as “evolutionary transcriptional debris”. Recent evidence suggests that miRNA is a novel regulator for transcription and translation. It is known that brief episodes of ischemia during ischemic preconditioning (IPC) trigger complex genetic pro-survival program that results in modulation of several key proteins involved in protection against I/R injury. We hypothesized that miRNA synthesized during IPC is the potential mediator of such protection. METHODS / RESULTS : Hearts were isolated from 3 groups (n = 6/group) of adult ICR mice and subjected to the following treatments in Langendorff mode: 120 min of perfusion with Krebs-Henseleit buffer (control); 30 min global ischemia followed by 1 hr reperfusion (I/R); 2 cycles of 30 sec ischemia and 90 sec reperfusion followed by 30 min ischemia and 1 hr reperfusion (IPC). Infarct size (IS) was measured by triphenyl tetrazolium staining. IPC in the Langendorff model reduced IS from 29.7 ± 2.1% in the I/R hearts to 9.1 ± 1.8 % in the IPC group. This protection was associated with a significant induction of miRNA-1 (162 ± 13%), miRNA-21 (118 ± 6%), and miRNA-24 (46 ± 12%). To test its protective role, miRNA was extracted from 6 hearts following the IPC protocol; and then injected in vivo into the left ventricle wall in another group of 6 mice. Forty-eight hrs later, these mice were subjected to I/R injury in vivo by left coronary artery ligation for 30 min followed by reperfusion for 24 hr. In addition, a subset of mice was treated with miRNA inhibitors (methylated antisense miRNA) in conjunction with miRNA from IPC hearts. The results show that miRNA extracted from the IPC hearts reproduced a protective phenotype with significantly lower infarction (18.8 ± 2.5 %) in vivo as compared to saline-treated control (37.5 ± 2.2%). This protective effect was totally abolished by specific inhibitors of miRNA-1 and miRNA-21 (IS: 43.7 ± 2.1%). CONCLUSION : miRNA extracted from preconditioned hearts shows a protective role against I/R injury. The detection of miRNA in preconditioned hearts offers a novel strategy in cardioprotection. Further studies are needed to identify the gene targets by which miRNA generate protective phenotype.

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Scott M Filippone ◽  
Sean K Roh ◽  
Fadi N Salloum ◽  
Rakesh C Kukreja ◽  
Anindita Das

Background: The selective inhibitor of mammalian target of rapamycin (mTOR), rapamycin (RAPA), has been shown to exert preconditioning-like cardioprotective effects against ischemia/reperfusion (I/R) injury. Two distinct mTOR complexes (mTORC1 and mTORC2) differentially regulate cardiomyocyte apoptosis and tissue damage following myocardial infarction. We hypothesized that reperfusion therapy with RAPA would reduce myocardial infarct size through differential modulation of mTOR complexes and MAP kinases. Methods and Results: Adult C57BL mice were subjected to 30 min of ischemia via left anterior descending coronary artery ligation followed by reperfusion for 24 hr. RAPA (0.25 mg/kg) or 10% DMSO (volume-matched control) was administered via intra-cardiac injection at the onset of reperfusion. Post I/R survival (90%) and cardiac function (fractional shortening, FS: 26.9±2.6%) were improved in RAPA-treated mice compared to control (survival: 60%, FS:16.7±3.2%). Additionally, RAPA caused significant reduction in myocardial infarct size (Fig. 1A), measured by tetrazolium chloride staining, and apoptosis (Fig. 1B) in peri-infarct regions, assessed by TUNEL staining. Western blot analysis revealed that RAPA restored Akt473 phosphorylation (target of mTORC2), but reduced ribosomal protein S6 phosphorylation (target of mTORC1) following I/R injury (Fig. 1C). The protective effect of RAPA was associated with increased phosphorylation of ERK1/2 and decreased phosphorylation of P38 (Fig. 1D). RAPA also attenuated pro-apoptotic protein Bax, in concert with increased pro-survival Bcl2 to Bax ratio (Fig. 1E). Conclusion: Reperfusion therapy with RAPA protects hearts against I/R injury by selective activation of mTORC2 and ERK with concurrent inhibition of mTOC1 and P38. We propose that RAPA could be a novel treatment strategy to modulate mTOR complexes and MAP kinase signaling for attenuation of reperfusion injury in the heart.


1997 ◽  
Vol 87 (2) ◽  
pp. 361-370 ◽  
Author(s):  
Judy R. Kersten ◽  
Todd J. Schmeling ◽  
Paul S. Pagel ◽  
Garrett J. Gross ◽  
David C. Warltier

Background The authors tested the hypothesis that isoflurane directly preconditions myocardium against infarction via activation of K(ATP) channels and that the protection afforded by isoflurane is associated with an acute memory phase similar to that of ischemic preconditioning. Methods Barbiturate-anesthetized dogs (n = 71) were instrumented for measurement of systemic hemodynamics. Myocardial infarct size was assessed by triphenyltetrazolium chloride staining. All dogs were subjected to a single prolonged (60 min) left anterior descending coronary artery (LAD) occlusion followed by 3 h of reperfusion. Ischemic preconditioning was produced by four 5-min LAD occlusions interspersed with 5-min periods of reperfusion before the prolonged LAD occlusion and reperfusion. The actions of isoflurane to decrease infarct size were examined in dogs receiving 1 minimum alveolar concentration (MAC) isoflurane that was discontinued 5 min before prolonged LAD occlusion. The interaction between isoflurane and ischemic preconditioning on infarct size was evaluated in dogs receiving isoflurane before and during preconditioning LAD occlusions and reperfusions. To test whether the cardioprotection produced by isoflurane can mimic the acute memory of ischemic preconditioning, isoflurane was discontinued 30 min before prolonged LAD occlusion and reperfusion. The mechanism of isoflurane-induced cardioprotection was evaluated in two final groups of dogs pretreated with glyburide in the presence or absence of isoflurane. Results Myocardial infarct size was 25.3 +/- 2.9% of the area at risk during control conditions. Isoflurane and ischemic preconditioning produced significant (P < 0.05) and equivalent reductions in infarct size (ischemic preconditioning alone, 9.6 +/- 2.0; isoflurane alone, 11.8 +/- 2.7; isoflurane and ischemic preconditioning, 5.1 +/- 1.9%). Isoflurane-induced reduction of infarct size also persisted 30 min after discontinuation of the anesthetic (13.9 +/- 1.5%), independent of hemodynamic effects during LAD occlusion. Glyburide alone had no effect on infarct size (28.3 +/- 3.9%), but it abolished the protective effects of isoflurane (27.1 +/- 4.6%). Conclusions Isoflurane directly preconditions myocardium against infarction via activation of K(ATP) channels in the absence of hemodynamic effects and exhibits acute memory of preconditioning in vivo.


2007 ◽  
Vol 293 (5) ◽  
pp. H2845-H2852 ◽  
Author(s):  
Rong Jiang ◽  
Amanda Zatta ◽  
Hajime Kin ◽  
Ningping Wang ◽  
James G. Reeves ◽  
...  

Protease-activated receptor-2 (PAR-2) may have proinflammatory effects in some tissues and protective effects in other tissues. The role of PAR-2 in in vivo myocardial ischemia-reperfusion has not yet been determined. This study tested the hypothesis that PAR-2 activation with the PAR-2 agonist peptide SLIGRL (PAR-2 AP) reduces myocardial infarct size when given at reperfusion in vivo, and this cardioprotection involves the ERK1/2 pathway. Anesthetized rats were randomly assigned to the following groups with 30 min of regional ischemia and 3 h reperfusion: 1) control with saline; 2) vehicle (DMSO); 3) PAR-2 AP, 1 mg/kg given intravenously 5 min before reperfusion; 4) scrambled peptide (SP), 1 mg/kg; 5) the ERK1/2 inhibitor PD-98059 (PD), 0.3 mg/kg given 10 min before reperfusion; 6) the phosphatidylinositol 3-kinase inhibitor LY-294002 (LY), 0.3 mg/kg given 10 min before reperfusion; 7) PD + PAR-2 AP, 0.3 mg/kg PD given 5 min before PAR-2 AP; 8) LY + PAR-2 AP, 0.3 mg/kg LY given 5 min before PAR-2 AP; 9) chelerythrine (Chel) alone, 5 mg/kg given 10 min before reperfusion; and 10) Chel + PAR-2 AP, Chel was given 5 min before PAR-2 AP (10 min before reperfusion). Activation of ERK1/2, ERK5, Akt, and the downstream targets of ERK1/2 [P90 RSK and bcl-xl/bcl-2-associated death promoter (BAD)] was determined by Western blot analysis in separate experiments. PAR-2 AP significantly reduced infarct size compared with control (36 ± 2% vs. 53 ± 1%, P < 0.05), and SP had no effect on infarct size (53 ± 3%). PAR-2 AP significantly increased phosphorylation of ERK1/2, p90RSK, and BAD but not Akt or ERK5. Accordingly, the infarct-size sparing effect of PAR-2 AP was abolished by PD (PAR-2 AP, 36 ± 2% vs. PD + PAR-2 AP, 50 ± 1%; P < 0.05) and by Chel (Chel + PAR-2 AP, 58 ± 2%) but not by LY (PAR-2 AP, 36 ± 2% vs. LY + PAR-2 AP, 38 ± 3%; P > 0.05). Therefore, PAR-2 activation is cardioprotective in the in vivo rat heart ischemia-reperfusion model, and this protection involves the ERK1/2 pathway and PKC.


2001 ◽  
Vol 280 (2) ◽  
pp. H591-H602 ◽  
Author(s):  
James D. McCully ◽  
Yoshiya Toyoda ◽  
Masahisa Uematsu ◽  
Robert D. Stewart ◽  
Sidney Levitsky

Adenosine-enhanced ischemic preconditioning (APC) extends the cardioprotection of ischemic preconditioning (IPC) by both significantly decreasing myocardial infarct size and significantly enhancing postischemic functional recovery. In this study, the role of adenosine receptors during ischemia-reperfusion was determined. Rabbit hearts ( n = 92) were used for Langendorff perfusion. Control hearts were perfused for 180 min, global ischemia hearts received 30-min ischemia and 120-min reperfusion, and IPC hearts received 5-min ischemia and 5-min reperfusion before ischemia. APC hearts received a bolus injection of adenosine coincident with IPC. Adenosine receptor (A1, A2, and A3) antagonists were used with APC before ischemia and/or during reperfusion. GR-69019X (A1/A3) and MRS-1191/MRS-1220 (A3) significantly increased infarct size in APC hearts when administered before ischemia and significantly decreased functional recovery when administered during both ischemia and reperfusion ( P < 0.05 vs. APC). DPCPX (A1) administered either before ischemia and/or during reperfusion had no effect on APC cardioprotection. APC-enhanced infarct size reduction is modulated by adenosine receptors primarily during ischemia, whereas APC-enhanced postischemic functional recovery is modulated by adenosine receptors during both ischemia and reperfusion.


1998 ◽  
Vol 275 (5) ◽  
pp. H1865-H1872 ◽  
Author(s):  
Anthony J. Palazzo ◽  
Steven P. Jones ◽  
Donald C. Anderson ◽  
D. Neil Granger ◽  
David J. Lefer

We investigated in vivo coronary P-selectin expression and its pathophysiological consequences in a murine model of myocardial ischemia-reperfusion (MI/R) using wild-type and P-selectin deficient (−/−) mice. Coronary P-selectin expression [μg monoclonal antibody (MAb)/g tissue] was measured using a radiolabeled MAb method after 30 min of myocardial ischemia and 20 min of reperfusion. P-selectin expression in wild-type mice was significantly ( P< 0.01) elevated in the ischemic zone (0.070 ± 0.010) compared with the nonischemic zone (0.037 ± 0.008). Myocardial P-selectin expression was nearly undetectable in P-selectin −/− mice after MI/R. Furthermore, myocardial infarct size (% of area at risk) after 30 min of myocardial ischemia and 120 min of reperfusion was 42.5 ± 4.4 in wild-type mice and 24.4 ± 4.0 in P-selectin −/− mice ( P < 0.05). In additional experiments of prolonged myocardial ischemia (60 min) and reperfusion (120 min), myocardial infarct size was similar in P-selectin −/− mice and wild-type mice. Our results clearly demonstrate the involvement of coronary P-selectin in the development of myocardial infarction after MI/R.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3631-3631 ◽  
Author(s):  
Li Zhu ◽  
Timothy J. Stalker ◽  
Tao Wang ◽  
Hong Jiang ◽  
Atushi Kumanogoh ◽  
...  

Abstract Contact-dependent signaling between platelets helps to promote thrombus growth and stability. One mechanism for contact-dependent signaling involves the binding of cell surface ligands to corresponding receptors on the surface of adjacent cells. In our efforts to identify novel participants in this process, we have recently reported that platelets express on their surface the semaphorin family member, sema4D, and its two known receptors, CD72 and plexin-B1 (Zhu, et al, PNAS, 2007). We have also shown that although their initial tail bleeding time is normal, platelets from sema4D(−/−) mice have a defect in collagen-induced signaling and platelet aggregation in vitro. In the present studies, we used matched sema4D(−/−) and wild type (WT) mice to examine the consequences of impaired sema4D signaling in models of platelet function in vivo. In the first model, irradiated Rose Bengal dye was used to produce an arteriolar injury in an exteriorized cremaster muscle. Platelets were identified with a fluorescent CD41 antibody and detected in real time using digital microscopy. The results showed that thrombus formation occurred in all of the mice that were tested, but while stable occlusion was observed in approximately half of the control mice, none of the sema4D(−/−) mice developed stable occlusions during the period of observation (p&lt;0.02). Similarly, when a laser was used to produce a focal injury in cremaster muscle arterioles, both the initial rate of platelet accumulation and the peak extent of accumulation were approximately 50% lower in the sema4D(−/−) mice than in the matched controls. To test the contribution of sema4D to platelet responses in a larger artery, the right common carotid was injured by transient exposure to FeCl3 and changes in flow were measured using a Doppler probe. The results showed that the time to occlusion was 35% greater in the sema4D(−/−) mice than in controls (p&lt;0.02). Furthermore, stable occlusion occurred in only 9 of 16 (56%) sema4D(−/−) mice Vs. 7 of 9 (78%) WT mice. Finally, myocardial infarct size was measured in an ischemia/reperfusion injury model 48 hrs after transient ligation of the left anterior descending coronary artery. Although infarction occurred in all cases, infarct volume was 56% smaller in the sema4D(−/−) mice than the matched controls (p&lt;0.01). In summary, these results show that there is a substantial impairment of platelet function in vivo in mice that lack sema4D. This impairment was observed in both arterioles and arteries using several different methods to evoke platelet activation. When combined with our earlier observations, the results show that signaling by sema4D and its receptors provides a novel mechanism to promote thrombus growth and stability.


2003 ◽  
Vol 285 (6) ◽  
pp. H2463-H2470 ◽  
Author(s):  
Koh Kuzume ◽  
Roger A. Wolff ◽  
Kazuhiko Amakawa ◽  
Kazuyo Kuzume ◽  
Donna M. Van Winkle

The opioid antagonist naloxone abolishes infarct limitation by myocardial ischemic preconditioning, suggesting that one or more endogenous opioid peptides can mediate cardiac protection against ischemic damage. We tested the hypothesis that the naturally occurring opioid peptide Met5-enkephalin (ME) modulates myocardial infarct size in vivo. Experiments were conducted in barbiturate-anesthetized open-chest rabbits subjected to regional myocardial ischemia-reperfusion. ME was administered via osmotic minipump for 24 h. Infarct size was assessed with tetrazolium and is expressed as a percentage of the area at risk. Exogenous ME reduced the amount of the risk zone infarcted by ∼60% compared with saline-treated controls. ME-induced protection was sensitive to opioid receptor blockade with naloxone [NAL 50 ± 2% vs. ME + NAL 39 ± 3%, P = not significant (NS)] and also to blockade of sarcolemmal and mitochondrial ATP-sensitive K+ (KATP) channels [5-hydroxydecanoate (5-HD) 33 ± 3% vs. ME + 5-HD 43 ± 8%, P = NS; and HMR-1098 60 ± 3% vs. ME + HMR-1098 54 ± 7%, P = NS]. We conclude that ME limits ischemic injury in vivo by an opioid receptor-mediated mechanism that involves both sarcolemmal and mitochondrial KATP channels.


2018 ◽  
Vol 45 (5) ◽  
pp. 2107-2121 ◽  
Author(s):  
Chunyan Wang ◽  
Haobo Li ◽  
Sheng Wang ◽  
Xiaowen Mao ◽  
Dan Yan ◽  
...  

Background/Aims: Protein kinase C(PKC)-ε activation is a mechanism of preconditioning cardioprotection but its role in repeated non-invasive limb ischemic preconditioning (rNLIP) mediated cardioprotection against myocardial ischemia/reperfusion (I/R) injury in diabetes is unknown. Methods: Eight-week streptozotocin-induced diabetic and non-diabetic Sprague-Dawley rats were subjected to I/R without or with rNLIP. In vitro, H9C2 cells were cultured with high glucose (HG) and subjected to hypoxia/re-oxygenation (H/R) without or with PKC-ε or STAT3 gene knock-down in the absence or presence of remote time hypoxia preconditioning (HPC). Results: Diabetic rats displayed larger post-ischemic myocardial infarct size and higher troponin-I release with concomitant cardiac PKC-ԑ overexpression and activation manifested as increased membrane translocation, while phosphorylated STAT3 (p-STAT3) and Akt (p-Akt) were lower compared to non-diabetic rats (all P<0.05). rNLIP reduced infarct size in both non-diabetic and diabetic rats. rNLIP reduced post-ischemic cardiac PKC-ԑ activation in diabetic while increased PKC-ԑ activation in non-diabetic rats, resulting in increased cardiac p-STAT3 and p-Akt. In H9C2 cells, HG increased PKC-ԑ expression and exacerbated post-H/R injury, accompanied with reduced p-STAT3 and p-Akt, which were all reverted by HPC. These HPC protective effects were abolished by either PKC-ԑ or STAT3 gene knock-down, except that PKC-ԑ gene knock-down reverted HG and H/R-induced reduction of p-STAT3. Conclusion: rNLIP attenuates diabetic heart I/R injury by mitigating HG-induced PKC-ԑ overexpression and, subsequently, activating STAT3.


Sign in / Sign up

Export Citation Format

Share Document