scholarly journals Endoplasmic reticulum stress inhibition blunts the development of essential hypertension in the spontaneously hypertensive rat

2019 ◽  
Vol 316 (5) ◽  
pp. H1214-H1223 ◽  
Author(s):  
Safaa Naiel ◽  
Rachel E. Carlisle ◽  
Chao Lu ◽  
Victor Tat ◽  
Jeffrey G. Dickhout

Essential hypertension is the leading cause of premature death worldwide. However, hypertension’s cause remains uncertain. endoplasmic reticulum (ER) stress has recently been associated with hypertension, but it is unclear whether ER stress causes hypertension. To clarify this question, we examined if ER stress occurs in blood vessels before the development of hypertension and if ER stress inhibition would prevent hypertension development. We used the spontaneously hypertensive rat (SHR) as a model of human essential hypertension and the Wistar-Kyoto (WKY) rat as its normotensive control. Resistance arteries collected from young rats determined that ER stress was present in SHR vessels before the onset of hypertension. To assess the effect of ER stress inhibition on hypertension development, another subset of rats were treated with 4-phenylbutyric acid (4-PBA; 1 g·kg−1·day−1) for 8 wk from 5 wk of age. Blood pressure was measured via radiotelemetry and compared with untreated SHR and WKY rats. Mesenteric resistance arteries were collected and assessed for structural and functional changes associated with hypertension. Systolic and diastolic blood pressures were significantly lower in the 4-PBA-treated SHR groups than in untreated SHRs. Additionally, 4-PBA significantly decreased the media-to-lumen ratio and ER stress marker expression, improved vasodilatory response, and reduced contractile responses in resistance arteries from SHRs. Overall, ER stress inhibition blunted the development of hypertension in the SHR. These data add evidence to the hypothesis that a component of hypertension in the SHR is caused by ER stress. NEW & NOTEWORTHY In this study, 4-phenylbutyric acid’s (4-PBA’s) molecular chaperone capability was used to inhibit endoplasmic reticulum (ER) stress in the small arteries of young spontaneously hypertensive rats (SHRs) and reduce their hypertension. These effects are likely mediated through 4-PBA's effects to reduce resistant artery contractility and increase nitric oxide-mediated endothelial vasodilation through a process preventing endothelial dysfunction. Overall, ER stress inhibition blunted the development of hypertension in this young SHR model. This suggests that a component of the increase in blood pressure found in SHRs is due to ER stress. However, it is important to note that inhibition of ER stress was not able to fully restore the blood pressure to normal, suggesting that a component of hypertension may not be due to ER stress. This study points to the inhibition of ER stress as an important new physiological pathway to lower blood pressure, where other known approaches may not achieve blood pressure-lowering targets.

2013 ◽  
Vol 305 (3) ◽  
pp. H344-H353 ◽  
Author(s):  
Kathryn M. Spitler ◽  
Takayuki Matsumoto ◽  
R. Clinton Webb

A contributing factor to increased peripheral resistance seen during hypertension is an increased production of endothelium-derived contractile factors (EDCFs). The main EDCFs are vasoconstrictor prostanoids, metabolites of arachidonic acid (AA) produced by Ca2+-dependent cytosolic phospholipase A2 (cPLA2) following phosphorylation (at Ser505) mediated by extracellular signal-regulated kinase (ERK1/2) and cyclooxygenase (COX) activations. Although endoplasmic reticulum (ER) stress has been shown to contribute to pathophysiological alterations in cardiovascular diseases, the relationship between ER stress and EDCF-mediated responses remains unclear. We tested the hypothesis that ER stress plays a role in EDCF-mediated responses via activation of the cPLA2/COX pathway in the aorta of the spontaneously hypertensive rat (SHR). Male SHR and Wistar-Kyoto rats (WKY) were treated with ER stress inhibitor, tauroursodeoxycholic acid or 4-phenlybutyric acid (TUDCA or PBA, respectively, 100 mg·kg−1·day−1 ip) or PBS (control, 300 μl/day ip) for 1 wk. There was a decrease in systolic blood pressure in SHR treated with TUDCA or PBA compared with control SHR (176 ± 3 or 181 ± 5, respectively vs. 200 ± 2 mmHg). In the SHR, treatment with TUDCA or PBA normalized aortic (vs. control SHR) 1) contractions to acetylcholine (ACh), AA, and tert-butyl hydroperoxide, 2) ACh-stimulated releases of prostanoids (thromboxane A2, PGF2α, and prostacyclin), 3) expression of COX-1, 4) phosphorylation of cPLA2 and ERK1/2, and 5) production of H2O2. Our findings demonstrate a novel interplay between ER stress and EDCF-mediated responses in the aorta of the SHR. Moreover, ER stress inhibition normalizes such responses by suppressing the cPLA2/COX pathway.


1987 ◽  
Vol 252 (3) ◽  
pp. R554-R561 ◽  
Author(s):  
W. N. Henley ◽  
A. Tucker

The mechanism by which chronic, moderate, hypobaric hypoxia attenuates systemic systolic blood pressure (SBP) in the spontaneously hypertensive rat (SHR) was investigated in a three-part study. In experiment 1, 10 wk of hypoxia (3,658 m altitude) commencing in 7-wk-old rats was partially effective in preventing the rise in SBP [hypoxic SHR (SHR-H) 154 mmHg vs. normoxic SHR (SHR-N) 180 mmHg; P less than 0.01]. When hypoxia was initiated in 5-wk-old SHR (experiments 2 and 3), protection against hypertension was nearly complete (experiment 2: SHR-H 122 mmHg vs. SHR-N 175 mmHg; P less than 0.001; experiment 3: 135 vs. 152 mmHg, respectively; P less than 0.05). Elevations in O2 consumption (VO2) and rectal temperature (Tre) in SHR vs. normotensive [Wistar-Kyoto (WKY)] rats provided evidence that the SHR is a hypermetabolic animal. Thyroid hormonal indices suggested that SHR changed from a low to high thyroid status at a time that rapid blood pressure elevation occurred; however, hypoxia did not influence thyroid status. Acute, significant decrements in VO2 and Tre in SHR-H (experiments 2 and 3) accompanied the attenuation of SBP by hypoxia, whereas large decrements in VO2 and SBP did not occur in hypoxic WKY. Timely administration of moderate hypoxia protects against the development of hypertension in the SHR. This protection may relate to a metabolic adaptation made by the hypoxic SHR.


1994 ◽  
Vol 308 (3) ◽  
pp. 145-151 ◽  
Author(s):  
Yiu-Fai Chen ◽  
Ren-Hui Yang ◽  
Qing-Cheng Meng ◽  
Edward J. Cragoe ◽  
Suzanne Oparil

2016 ◽  
pp. 1039-1044
Author(s):  
M. PRAVENEC ◽  
V. LANDA ◽  
V. ZÍDEK ◽  
P. MLEJNEK ◽  
J. ŠILHAVÝ ◽  
...  

The spontaneously hypertensive rat (SHR) is the most widely used animal model of essential hypertension and left ventricular hypertrophy. Catecholamines play an important role in the pathogenesis of both essential hypertension in humans and in the SHR. Recently, we obtained evidence that the SHR harbors a variant in the gene for dopamine beta hydroxylase (Dbh) that is associated with reduced adrenal expression of Dbh mRNA and reduced DBH enzymatic activity which correlated negatively with blood pressure. In the current study, we used a transgenic experiment to test the hypothesis that reduced Dbh expression predisposes the SHR to hypertension and that augmentation of Dbh expression would reduce blood pressure. We derived 2 new transgenic SHR-Dbh lines expressing Dbh cDNA under control of the Brown Norway (BN) wild type promoter. We found modestly increased adrenal expression of Dbh in transgenic rats versus SHR non-transgenic controls that was associated with reduced adrenal levels of dopamine and increased plasma levels of norepinephrine and epinephrine. The observed changes in catecholamine metabolism were associated with increased blood pressure and left ventricular mass in both transgenic lines. We did not observe any consistent changes in brainstem levels of catecholamines or of mRNA levels of Dbh in the transgenic strains. Contrary to our initial expections, these findings are consistent with the possibility that genetically determined decreases in adrenal expression and activity of DBH do not represent primary determinants of increased blood pressure in the SHR model.


Sign in / Sign up

Export Citation Format

Share Document