Lower limb-localized vascular phenomena explain initial orthostatic hypotension upon standing from squat

2011 ◽  
Vol 301 (5) ◽  
pp. H2102-H2112 ◽  
Author(s):  
Michael E. Tschakovsky ◽  
Kristine Matusiak ◽  
Catherine Vipond ◽  
Lisa McVicar

The cause(s) of initial orthostatic hypotension (transient fall in blood pressure within 15 s upon active rising) have not been established. We tested the hypothesis that this hypotension is due to local vascular phenomena in contracting leg muscles from the brief effort of standing up. Seventeen young healthy subjects (2 male and 15 female, 22.5 ± 1.0 years) performed an active rise from resting squat after a 10-s squat, a 1-min squat, or a 5-min squat. Beat-by-beat arterial blood pressure, cardiac output, heart rate, and stroke volume (Finometer finger photoplethysmography) and right common femoral artery blood flow (Doppler and Echo ultrasound) were recorded. Data are means ± SE. Quiet standing before squat represented baseline. Peak increases in lower limb and total vascular conductance (ml·min−1·mmHg−1) upon standing were not different within squat conditions (10-s squat, 50.0 ± 12.4 vs. 44.3 ± 5.0; 1-min squat, 54.7 ± 9.2 vs. 50.5 ± 4.5; 5-min squat, 67.4 ± 13.7 vs. 58.8 ± 3.9; all P > 0.574). Mean arterial blood pressure (in mmHg) fell to a nadir well below standing baseline in all conditions despite increases in cardiac output. The hypotension predicted by the increase in leg vascular conductance accounted for this hypotension [observed vs. predicted (in mmHg): 10-s squat, −17.1 ± 2.1 vs. −18.3 ± 5.5; 1-min squat, −22.0 ± 3.8 vs. −25.3 ± 4.9; 5-min squat, −28.3 ± 4.0 vs. −29.2 ± 6.7]. We conclude that rapid contraction induced dilation in leg muscles with the effort of standing, along with a minor potential contribution of elevated lower limb arterio-venous pressure gradient, outstrips compensatory cardiac output responses and is the cause of initial orthostatic hypotension upon standing from squat.

1999 ◽  
Vol 277 (2) ◽  
pp. H576-H583 ◽  
Author(s):  
José González-Alonso ◽  
Ricardo Mora-Rodríguez ◽  
Edward F. Coyle

We determined whether the deleterious effects of dehydration and hyperthermia on cardiovascular function during upright exercise were attenuated by elevating central blood volume with supine exercise. Seven trained men [maximal oxygen consumption (V˙o 2 max) 4.7 ± 0.4 l/min (mean ± SE)] cycled for 30 min in the heat (35°C) in the upright and in the supine positions (V˙o 2 2.93 ± 0.27 l/min) while maintaining euhydration by fluid ingestion or while being dehydrated by 5% of body weight after 2 h of upright exercise. When subjects were euhydrated, esophageal temperature (Tes) was 37.8–38.0°C in both body postures. Dehydration caused equal hyperthermia during both upright and supine exercise (Tes = 38.7–38.8°C). During upright exercise, dehydration lowered stroke volume (SV), cardiac output, mean arterial pressure (MAP), and cutaneous vascular conductance and increased heart rate and plasma catecholamines [30 ± 6 ml, 3.0 ± 0.7 l/min, 6 ± 2 mmHg, 22 ± 8%, 14 ± 2 beats/min, and 50–96%, respectively; all P < 0.05]. In contrast, during supine exercise, dehydration did not cause significant alterations in MAP, cutaneous vascular conductance, or plasma catecholamines. Furthermore, supine versus upright exercise attenuated the increases in heart rate (7 ± 2 vs. 9 ± 1%) and the reductions in SV (13 ± 4 vs. 21 ± 3%) and cardiac output (8 ± 3 vs. 14 ± 3%) (all P< 0.05). These results suggest that the decline in cutaneous vascular conductance and the increase in plasma norepinephrine concentration, independent of hyperthermia, are associated with a reduction in central blood volume and a lower arterial blood pressure.


2013 ◽  
Vol 304 (5) ◽  
pp. H759-H766 ◽  
Author(s):  
Seth T. Fairfax ◽  
Jaume Padilla ◽  
Lauro C. Vianna ◽  
Michael J. Davis ◽  
Paul J. Fadel

Previous studies in humans attempting to assess sympathetic vascular transduction have related large reflex-mediated increases in muscle sympathetic nerve activity (MSNA) to associated changes in limb vascular resistance. However, such procedures do not provide insight into the ability of MSNA to dynamically control vascular tone on a beat-by-beat basis. Thus we examined the influence of spontaneous MSNA bursts on leg vascular conductance (LVC) and how variations in MSNA burst pattern (single vs. multiple bursts) and burst size may affect the magnitude of the LVC response. In 11 young men, arterial blood pressure, common femoral artery blood flow, and MSNA were continuously recorded during 20 min of supine rest. Signal averaging was used to characterize percent changes in LVC for 15 cardiac cycles following heartbeats associated with and without MSNA bursts. LVC significantly decreased following MSNA bursts, reaching a nadir during the 6th cardiac cycle (single bursts, −2.9 ± 1.1%; and multiple bursts, −11.0 ± 1.4%; both, P < 0.001). Individual MSNA burst amplitudes and the total amplitude of consecutive bursts were related to the magnitude of peak decreases in LVC. In contrast, cardiac cycles without MSNA bursts were associated with a significant increase in LVC (+3.1 ± 0.5%; P < 0.001). Total vascular conductance decreased in parallel with LVC also reaching a nadir around the peak rise in arterial blood pressure following an MSNA burst. Collectively, these data are the first to assess beat-by-beat sympathetic vascular transduction in resting humans, demonstrating robust and dynamic decreases in LVC following MSNA bursts, an effect that was absent for cardiac cycles without MSNA bursts.


1991 ◽  
Vol 261 (1) ◽  
pp. H172-H180 ◽  
Author(s):  
L. M. Sassen ◽  
K. Bezstarosti ◽  
W. J. Van der Giessen ◽  
J. M. Lamers ◽  
P. D. Verdouw

Effects of pretreatment with L-propionylcarnitine (50 mg/kg, n = 9) or saline (n = 10) were studied in open-chest anesthetized pigs, in which ischemia was induced by decreasing left anterior descending coronary artery blood flow to 20% of baseline. After 60 min of ischemia, myocardium was reperfused for 2 h. In both groups, flow reduction abolished contractile function of the affected myocardium and caused similar decreases in ATP (by 55%) and energy charge [(ATP + 0.5ADP)/(ATP + ADP + AMP); decrease from 0.91 to 0.60], mean arterial blood pressure (by 10-24%), the maximum rate of rise in left ventricular pressure (by 26-32%), and cardiac output (by 20-30%). During reperfusion, “no-reflow” was attenuated by L-propionylcarnitine, because myocardial blood flow returned to 61 and 82% of baseline in the saline- and L-propionylcarnitine-treated animals, respectively. Cardiac output of the saline-treated animals further decreased (to 52% of baseline), and systemic vascular resistance increased from 46 +/- 3 to 61 +/- 9 mmHg.min.l-1, thereby maintaining arterial blood pressure. In L-propionylcarnitine-treated pigs, cardiac output remained at 75% of baseline, and systemic vascular resistance decreased from 42 +/- 3 to 38 +/- 4 mmHg.min.l-1. In both groups, energy charge but not the ATP level of the ischemic-reperfused myocardium tended to recover, whereas the creatine phosphate level showed significantly more recovery in saline-treated animals. We conclude that L-propionylcarnitine partially preserved vascular patency in ischemic-reperfused porcine myocardium but had no immediate effect on “myocardial stunning.” Potential markers for long-term recovery were not affected by L-propionylcarnitine.


1995 ◽  
Vol 78 (5) ◽  
pp. 1793-1799 ◽  
Author(s):  
M. Kamitomo ◽  
T. Ohtsuka ◽  
R. D. Gilbert

We exposed fetuses to high-altitude (3,820 m) hypoxemia from 30 to 130 days gestation, when we measured fetal heart rate, right and left ventricular outputs with electromagnetic flow probes, and arterial blood pressure during an isoproterenol dose-response infusion. We also measured the distribution of cardiac output with radiolabeled microspheres during the maximal isoproterenol dose. Baseline fetal arterial blood pressure was higher in long-term hypoxemic fetuses (50.1 +/- 1.3 vs. 43.4 +/- 1.0 mmHg) but fell during the isoproterenol infusion to 41.3 +/- 1.4 and 37.5 +/- 1.4 mmHg, respectively, at the highest dose. Heart rate was the same in both groups and did not differ during isoproterenol infusion. Baseline fetal cardiac output was lower in the hypoxemic group (339 +/- 18 vs. 436 +/- 19 ml.min-1.kg-1) due mainly to a reduction in right ventricular output. During the isoproterenol infusion, right ventricular output increased to the same extent in both hypoxemic and normoxic fetuses (approximately 35%); however, left ventricular output increased only approximately 15% in the hypoxemic group compared with approximately 40% in the normoxic group. The percent change in individual organ blood flows during isoproterenol infusion in the hypoxemic groups was not significantly different from the normoxic group. All of the mechanisms that might be responsible for the differential response of the fetal left and right ventricles to long-term hypoxia are not understood and need further exploration.


1991 ◽  
Vol 260 (1) ◽  
pp. H254-H259
Author(s):  
R. Maass-Moreno ◽  
C. F. Rothe

We tested the hypothesis that the blood volumes of the spleen and liver of cats are reflexly controlled by the carotid sinus (CS) baroreceptors. In pentobarbital-anesthetized cats the CS area was isolated and perfused so that intracarotid pressure (Pcs) could be controlled while maintaining a normal brain blood perfusion. The volume changes of the liver and spleen were estimated by measuring their thickness using ultrasonic techniques. Cardiac output, systemic arterial blood pressure (Psa), central venous pressure, central blood volume, total peripheral resistance, and heart rate were also measured. In vagotomized cats, increasing Pcs by 100 mmHg caused a significant reduction in Psa (-67.8%), cardiac output (-26.6%), total peripheral resistance (-49.5%), and heart rate (-15%) and significantly increased spleen volume (9.7%, corresponding to a 2.1 +/- 0.5 mm increase in thickness). The liver volume decreased, but only by 1.6% (0.6 +/- 0.2 mm decrease in thickness), a change opposite that observed in the spleen. The changes in cardiovascular variables and in spleen volume suggest that the animals had functioning reflexes. These results indicate that in pentobarbital-anesthetized cats the carotid baroreceptors affect the volume of the spleen but not the liver and suggest that, although the spleen has an active role in the control of arterial blood pressure in the cat, the liver does not.


2011 ◽  
Vol 113 (2) ◽  
pp. 272-274 ◽  
Author(s):  
Yoshifumi Kotake ◽  
Takashige Yamada ◽  
Hiromasa Nagata ◽  
Junzo Takeda ◽  
Hideyuki Shimizu

1994 ◽  
Vol 77 (6) ◽  
pp. 2761-2766 ◽  
Author(s):  
S. W. Mittelstadt ◽  
L. B. Bell ◽  
K. P. O'Hagan ◽  
P. S. Clifford

Previous studies have shown that the muscle chemoreflex causes an augmented blood pressure response to exercise and partially restores blood flow to ischemic muscle. The purpose of this study was to investigate the effects of the muscle chemoreflex on blood flow to nonischemic exercising skeletal muscle. During each experiment, dogs ran at 10 kph for 8–16 min and the muscle chemoreflex was evoked by reducing hindlimb blood flow at 4-min intervals (0–80%). Arterial blood pressure, hindlimb blood flow, forelimb blood flow, and forelimb vascular conductance were averaged over the last minute at each level of occlusion. Stimulation of the muscle chemoreflex caused increases in arterial blood pressure and forelimb blood flow and decreases in forelimb vascular conductance. The decrease in forelimb vascular conductance demonstrates that the muscle chemoreflex causes vasoconstriction in the nonischemic exercising forelimb. Despite the decrease in vascular conductance, the increased driving pressure caused by the pressor response was large enough to produce an increased forelimb blood flow.


Sign in / Sign up

Export Citation Format

Share Document