scholarly journals Impact of high-fat, low-carbohydrate diet on myocardial substrate oxidation, insulin sensitivity, and cardiac function after ischemia-reperfusion

2016 ◽  
Vol 311 (1) ◽  
pp. H1-H10 ◽  
Author(s):  
Jian Liu ◽  
Peipei Wang ◽  
Samuel L. Douglas ◽  
Joshua M. Tate ◽  
Simon Sham ◽  
...  

High-fat, low-carbohydrate Diet (HFLCD) impairs the myocardial response to ischemia-reperfusion, but the underlying mechanisms remain elusive. We sought to determine the magnitude of diet-induced alterations in intrinsic properties of the myocardium (including insulin sensitivity and substrate oxidation) and circulating substrate and insulin differences resulting from diet, leading to this impaired response. Rats were fed HFLCD (60% kcal from fat/30% protein/10% carbohydrate) or control diet (CONT) (16%/19%/65%) for 2 wk. Isolated hearts underwent global low-flow ischemia followed by reperfusion (I/R). Carbon-13 NMR spectroscopy was used to determine myocardial substrate TCA cycle entry. Myocardial insulin sensitivity was assessed as dose-response of Akt phosphorylation. There was a significant effect of HFLCD and I/R with both these factors leading to an increase in free fatty acid (FFA) oxidation and a decrease in carbohydrate or ketone oxidation. Following I/R, HFLCD led to decreased ketone and increased FFA oxidation; the recovery of left ventricular (LV) function was decreased in HFLCD and was negatively correlated with FFA oxidation and positively associated with ketone oxidation. HFLCD also resulted in reduced insulin sensitivity. Under physiologic ranges, there were no direct effects of buffer insulin and ketone levels on oxidation of any substrate and recovery of cardiac function after I/R. An insulin-ketone interaction exists for myocardial substrate oxidation characteristics. We conclude that the impaired recovery of function after ischemia-reperfusion with HFLCD is largely due to intrinsic diet effects on myocardial properties, rather than to diet effect on circulating insulin or substrate levels.

2014 ◽  
Vol 307 (4) ◽  
pp. H598-H608 ◽  
Author(s):  
Jian Liu ◽  
Peipei Wang ◽  
Luyun Zou ◽  
Jing Qu ◽  
Silvio Litovsky ◽  
...  

High-fat, low-carbohydrate diets (HFLCD) are often eaten by humans for a variety of reasons, but the effects of such diets on the heart are incompletely understood. We evaluated the impact of HFLCD on myocardial ischemia/reperfusion (I/R) using an in vivo model of left anterior descending coronary artery ligation. Sprague-Dawley rats (300 g) were fed HFLCD (60% calories fat, 30% protein, 10% carbohydrate) or control (CONT; 16% fat, 19% protein, 65% carbohydrate) diet for 2 wk and then underwent open chest I/R. At baseline (preischemia), diet did not affect left ventricular (LV) systolic and diastolic function. Oil red O staining revealed presence of lipid in the heart with HFLCD but not in CONT. Following I/R, recovery of LV function was decreased in HFLCD. HFLCD hearts exhibited decreased ATP synthase and increased uncoupling protein-3 gene and protein expression. HFLCD downregulated mitochondrial fusion proteins and upregulated fission proteins and store-operated Ca2+ channel proteins. HFLCD led to increased death during I/R; 6 of 22 CONT rats and 16 of 26 HFLCD rats died due to ventricular arrhythmias and hemodynamic shock. In surviving rats, HFLCD led to larger infarct size. We concluded that in vivo HFLCD does not affect nonischemic LV function but leads to greater myocardial injury during I/R, with increased risk of death by pump failure and ventricular arrhythmias, which might be associated with altered cardiac energetics, mitochondrial fission/fusion dynamics, and store-operated Ca2+ channel expression.


2019 ◽  
Vol 2019 ◽  
pp. 1-4
Author(s):  
Benedicta Nneoma Nnodum ◽  
Eziafa Oduah ◽  
David Albert ◽  
Mark Pettus

The ketogenic diet (KD) is a high-fat, adequate-protein, and low-carbohydrate diet that leads to nutritional ketosis and weight loss. It is known to induce ketosis but is not an established cause of clinically significant ketoacidosis. Lactation ketoacidosis is well established in bovine literature but remains a rare phenomenon in humans. Here we present a life-threatening case of severe ketoacidosis in a nondiabetic lactating mother on a strict ketogenic diet. We review the available case reports of lactation ketoacidosis in humans and the mechanisms thereof. Although ketogenic diet has been shown to be safe in nonpregnant individuals, the safety of this diet in lactating mothers is not known. Health professionals and mothers should be made aware of the potential risk associated with a strict ketogenic diet when combined with lactation. Prompt diagnosis and immediate treatment cannot be overemphasized. To our knowledge, this is the first reported case of life-threatening lactation ketoacidosis associated with ketogenic diet while consuming an adequate number of calories per day.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Aryadi Arsyad ◽  
Irfan Idris ◽  
Andi A. Rasyid ◽  
Rezky A. Usman ◽  
Kiki R. Faradillah ◽  
...  

Background. Ketogenic diet has been used as supportive therapy in a range of conditions including epilepsy, diabetes mellitus, and cancer. Objective. This study aimed to investigate the effects of long-term consumption of ketogenic diet on blood gas, hematological profiles, organ functions, and superoxide dismutase level in a rat model. Materials and Methods. Fifteen male Wistar rats were divided into control (n = 8) and ketogenic (n = 7) groups. Controls received standard diet contained 52.20% of carbohydrates, 7.00% fat, and 15.25% protein; meanwhile, the ketogenic group received a high-fat-low-carbohydrate diet which contained 5.66% of carbohydrate, 86.19% fat, and 8.15% protein. All rats were caged individually and received 30g of either standard or high-fat-low-carbohydrate pellets. The experiment was carried out for 60 days before the blood samples were taken and analyzed to obtain blood gas, cell counts, organ biomarkers, and plasma antioxidant superoxide dismutase (SOD) levels. Results. The rats subjected to ketogenic diet experienced a marked decrease in body weight, blood sugar, and increased blood ketones (p<0.05). The average blood pH was 7.36 ± 0.02 and base excess was −5.57 ± 2.39 mOsm/L, which were significantly lower than controls (p<0.05). Hematological analysis showed significantly lower erythrocyte, hemoglobin, and hematocrit levels. No significant changes were found in alanine aminotransferase, aspartate aminotransferase, urea, and creatinine levels, indicating normal liver and kidney functions. Nevertheless, plasma SOD level significantly reduced with ketogenic diet. Conclusion. Long-term ketogenic diet induces metabolic acidosis, anemia, and reduced antioxidant enzyme level in rats following 60 days of consuming high-fat-low-carbohydrate diet.


Sign in / Sign up

Export Citation Format

Share Document