Pregnancy blunts pulmonary vascular reactivity in dogs

1980 ◽  
Vol 239 (3) ◽  
pp. H297-H301 ◽  
Author(s):  
L. G. Moore ◽  
J. T. Reeves

Pregnancy decreases systemic vascular reactivity but comparatively little is known about the effects of pregnancy on the pulmonary circulation. Pulmonary vascular resistance (PVR) during acute hypoxia was lower (P < 0.01) in eight intact anesthetized pregnant dogs compared to the same animals postpartum. Mean pulmonary arterial pressure (Ppa) and PVR during infusion of prostaglandin (PG) F2 alpha were also reduced during pregnancy. Nonpregnant female dogs (n = 5) treated with estrogen (0.001 mg x kg-1 x da-1) for 2 wk had decreased Ppa (P < 0.01) during acute hypoxia compared to control measurements, but PVR was unchanged during hypoxia and PGF2 alpha infusion. Treatment with progesterone in four dogs had no effect on pulmonary vascular reactivity to hypoxia or PGF2 alpha. Inhibition of circulating PG with meclofenamate in four dogs during pregnancy did not appear to restore pulmonary vascular reactivity. Blunted pulmonary vascular reactivity is suggested by the limited data available for women, but is not seen in pregnant cows. We conclude that pregnancy decreases pulmonary as well as systemic vascular reactivity in the dog, but the mechanism is unclear.

1979 ◽  
Vol 46 (1) ◽  
pp. 184-188 ◽  
Author(s):  
L. G. Moore ◽  
J. T. Reeves ◽  
D. H. Will ◽  
R. F. Grover

Observations in several species suggest that pulmonary vascular reactivity may be reduced during pregnancy. We tested this hypothesis in two groups of unanesthetized cows, one “susceptible” and one “resistant” to high mountain or brisket disease. At the altitude of residence (1,524 m), mean pulmonary arterial pressure was elevated during pregnancy by 18% and total pulmonary vascular resistance by 32% in susceptible but not in resistant cows. During acute exposure to simulated altitudes of 2,120--4,550 m, pulmonary arterial pressure was increased by 16% and total pulmonary resistance by 28% during pregnancy in susceptible cows. The pulmonary pressor response to a 5 microgram/kg bolus of prostaglandin FIalpha was not different during pregnancy in either group. Resistant cows hyperventilated while pregnant, raising arterial partial pressure of oxygen (PaO2) by 6 Torr both at 1,524 m and, on the average, by 7 Torr at altitudes of 2,120--4,550 m. Susceptible cows increased their PaO2 less than did the resistant cows during pregnancy. The results indicated that pregnancy was associated with a greater rise in pulmonary arterial pressure and total pulmonary vascular resistance during acute hypoxia and failed to elicit as great a ventilatory response in susceptible than in resistant cows.


2004 ◽  
Vol 97 (2) ◽  
pp. 515-521 ◽  
Author(s):  
Claudia Höhne ◽  
Martin O. Krebs ◽  
Manuela Seiferheld ◽  
Willehad Boemke ◽  
Gabriele Kaczmarczyk ◽  
...  

Acute hypoxia increases pulmonary arterial pressure and vascular resistance. Previous studies in isolated smooth muscle and perfused lungs have shown that carbonic anhydrase (CA) inhibition reduces the speed and magnitude of hypoxic pulmonary vasoconstriction (HPV). We studied whether CA inhibition by acetazolamide (Acz) is able to prevent HPV in the unanesthetized animal. Ten chronically tracheotomized, conscious dogs were investigated in three protocols. In all protocols, the dogs breathed 21% O2 for the first hour and then 8 or 10% O2 for the next 4 h spontaneously via a ventilator circuit. The protocols were as follows: protocol 1: controls given no Acz, inspired O2 fraction (FiO2) = 0.10; protocol 2: Acz infused intravenously (250-mg bolus, followed by 167 μg·kg−1·min−1 continuously), FiO2 = 0.10; protocol 3: Acz given as above, but with FiO2 reduced to 0.08 to match the arterial Po2 (PaO2) observed during hypoxia in controls. PaO2 was 37 Torr during hypoxia in controls, mean pulmonary arterial pressure increased from 17 ± 1 to 23 ± 1 mmHg, and pulmonary vascular resistance increased from 464 ± 26 to 679 ± 40 dyn·s−1·cm−5 ( P < 0.05). In both Acz groups, mean pulmonary arterial pressure was 15 ± 1 mmHg, and pulmonary vascular resistance ranged between 420 and 440 dyn·s−1·cm−5. These values did not change during hypoxia. In dogs given Acz at 10% O2, the arterial PaO2 was 50 Torr owing to hyperventilation, whereas in those breathing 8% O2 the PaO2 was 37 Torr, equivalent to controls. In conclusion, Acz prevents HPV in conscious spontaneously breathing dogs. The effect is not due to Acz-induced hyperventilation and higher alveolar Po2, nor to changes in plasma endothelin-1, angiotensin-II, or potassium, and HPV suppression occurs despite the systemic acidosis with CA inhibition.


1992 ◽  
Vol 73 (4) ◽  
pp. 1474-1480 ◽  
Author(s):  
C. M. Tseng ◽  
S. Qian ◽  
W. Mitzner

Changes in pulmonary hemodynamics and vascular reactivity in emphysematous hamsters were studied in an isolated lung preparation perfused at constant flow with blood and 3% dextran. Hamsters were treated with intratracheal porcine pancreatic elastase at 70 days of age, and experimental studies were conducted at 1, 3, and 8 mo after treatment. Baseline pulmonary arterial pressure in elastase-treated lungs was increased compared with saline-treated control lungs 1 mo after treatment, but this increase did not progress at 3 and 8 mo. Increases in pulmonary arterial pressure in elastase-treated lungs were temporally correlated with the morphological development of emphysema and right ventricular hypertrophy; both of these were evident at 1 mo after treatment and showed little change thereafter. Pressor responses to hypoxia and angiotensin II were not different between elastase-treated and control lungs at 1 and 3 mo. At 8 mo, however, pressor responses in emphysematous lungs to 0% O2 (but not to angiotensin II) were significantly increased. This was the result of a lack of the normal age-related fall in the hypoxic pressor response. Our results suggest that the right ventricular hypertrophy found in these emphysematous animals results from a chronically increased pulmonary vascular resistance. Furthermore, increases in pulmonary vascular resistance in the early development of emphysema are likely a result of the loss of vascular beds and supporting connective tissue.


1987 ◽  
Vol 63 (3) ◽  
pp. 982-987 ◽  
Author(s):  
M. Cutaia ◽  
P. Friedrich

Past work in the isolated perfused cat lung has shown that acute hypoxia (H) changes the response to norepinephrine (NE) from vasoconstriction to vasodilation but has no effect on the response to serotonin (S). These results could be related to the increase in pulmonary arterial pressure or vascular resistance during the hypoxic pressor response or a direct effect of H. We addressed this question, in the same preparation, by comparing responses to NE under four conditions in each experimental animal (n = 12): 1) NE infused during normoxia; 2) NE infused after vascular resistance (Rpv) was increased with serotonin; 3) NE infused after Rpv was increased by H; 4) NE infused after lobar pressure was raised by an increase in flow (P/F). PO2 values during H were varied (27–56 Torr). S and H produced a 137 +/- 35 and 43 +/- 8% delta Rpv increase in lobar vascular resistance, respectively. P/F increased lobar pressure 91 +/- 10%. Only NE infusion during H demonstrated significant differences in lobar pressure and Rpv compared with control normoxic periods. There was no correlation between responses to NE during S, H, and P/F and degree to which each stimulus increased Rpv or lobar pressure (r = 0.003, 0.28, 0.24). A significant relationship between response to NE during H vs. PO2 during H was observed (r = 0.78; P less than 0.001). In a subset of animals, we repeated the infusion of NE during H and P/F post-beta-blockade. The decrease in vascular response to NE during H and the correlation of PO2 with NE response were abolished (n = 7).(ABSTRACT TRUNCATED AT 250 WORDS)


Respiration ◽  
2000 ◽  
Vol 67 (5) ◽  
pp. 502-506 ◽  
Author(s):  
Akira Nakamura ◽  
Norio Kasamatsu ◽  
Ikko Hashizume ◽  
Takushi Shirai ◽  
Suguru Hanzawa ◽  
...  

1964 ◽  
Vol 19 (4) ◽  
pp. 707-712 ◽  
Author(s):  
I. Bruderman ◽  
K. Somers ◽  
W. K. Hamilton ◽  
W. H. Tooley ◽  
J. Butler

The hypothesis that the surface tension of the fluid film which lines the lung alveoli reduces the pericapillary pressure in air-filled lungs was tested by perfusing the excised lungs of dogs with saline, 6% dextran in saline, and blood. After almost maximal inflation with air from low volumes or the degassed state (inflation state) the pulmonary arterial pressure, relative to the base of the lungs, was lower than the alveolar pressure with flows up to 50 ml/min. It was higher than the alveolar pressure at any flow when the air-liquid interface had been abolished by filling the lungs to the same volume with fluid. The pulmonary arterial pressure at the same flow and alveolar pressure was lower in the inflation state than after deflation from higher volumes (the deflation state). However, lung volume was larger in the deflation state. The possibility of some low resistance channels in the inflation state could not be excluded. However, histological examinations showed that the alveolar capillaries were patent and failed to show any airless lung. pulmonary circulation; pericapillary pressure in lungs; surface tension and pulmonary vascular resistance Submitted on July 29, 1963


1983 ◽  
Vol 55 (2) ◽  
pp. 558-561 ◽  
Author(s):  
J. Lindenfeld ◽  
J. T. Reeves ◽  
L. D. Horwitz

In resting conscious dogs, administration of cyclooxygenase inhibitors results in modest increases in pulmonary arterial pressure and pulmonary vascular resistance, suggesting that vasodilator prostaglandins play a role in maintaining the low vascular resistance in the pulmonary bed. To assess the role of these vasodilator prostaglandins on pulmonary vascular resistance during exercise, we studied seven mongrel dogs at rest and during exercise before and after intravenous meclofenamate (5 mg/kg). Following meclofenamate, pulmonary vascular resistance rose both at rest (250 24 vs. 300 +/- 27 dyn . s . cm-5, P less than 0.01) and with exercise (190 +/- 9 vs. 210 +/- 12 dyn . s . cm-5, P less than 0.05). Systemic vascular resistance rose slightly following meclofenamate both at rest and during exercise. There were no changes in cardiac output. The effects of cyclooxygenase inhibition, although significant, were less during exercise than at rest. This suggests that the normal fall in pulmonary vascular resistance during exercise depends largely on factors other than vasodilator prostaglandins.


1975 ◽  
Vol 38 (3) ◽  
pp. 495-498 ◽  
Author(s):  
D. H. Will ◽  
J. L. Hicks ◽  
C. S. Card ◽  
J. T. Reeves ◽  
A. F. Alexander

We investigated acute and chronic hypoxic pulmonary pressor responses in two groups of calves, one bred to be susceptible, the other resistant to high-altitude pulmonary hypertension. Twelve 5-mo-old susceptible calves residing at 1,524 m increased their mean pulmonary arterial pressure from 26 +/- 2 (SE) to 55 +/- 4 mmHg during 2 h at a simulated altitude of 4,572 m. In 10 resistant calves pressure increased from 22 +/- 1 to 37 +/- 2 mmHg. Five calves were selected from each group for further study. When 9 mo old, the 5 susceptible calves again showed a greater pressor response to acute hypoxia (27 +/- 1 to 55 +/- 4 mmHg) than did 5 resistant calves (23 +/- 1 to 41 +/- 3 mmHg). When 12 mo old, the 5 susceptible calves also developed a greater increase in pulmonary arterial pressure (21 +/- 2 to 9 +/- 4 mmHg) during 18 days at 4,572 m than did the 5 resistant calves (21 +/- 1 to 64 +/- 4 mmHg). Acute and chronic hypoxic pulmonary pressor responses were highly correlated (r = 0.91; P less than 0.001) indicating that they were probably produced through a common mechanism.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Nika Skoro-Sajer ◽  
Nicklas Hack ◽  
Roela Sadushi ◽  
Johannes Jakowitsch ◽  
Diana Bonderman ◽  
...  

Hemodynamic responder status defined as an acute decrease of mean pulmonary arterial pressure (mPAP)>10mmHg and below 40mmHg is associated with improved outcome in patients (pts) with pulmonary arterial hypertension (PAH). Pulmonary vascular reactivity to nitric oxide (NO) is controversial in chronic thromboembolic pulmonary hypertension (CTEPH). We speculated that the magnitude of the acute decrease in mean pulmonary artery pressure (mPAP) after exposure to NO might reflect the degree of small vessel disease in CTEPH and thus, affect long-term outcome. Methods: Right heart catheterization was performed in 62 (55  ± 15 years, 32 female) pts with major-vessel CTEPH, at baseline and during inhalation of 40ppm NO. Within 25±15 days patients underwent pulmonary endarterectomy (PEA). Pts were followed for 11.3±26 months. Predictors of survival were analyzed by Cox regression analysis, and survival was described by Kaplan-Meier curves. Results: Significant reductions in mean pulmonary arterial pressure (mPAP; p<0.001), pulmonary vascular resistance (PVR; p<0.001) and an increase in mixed venous oxygen saturation following NO inhalation were demonstrated (p<0.001) by a paired t-test. Stepwise multivariate analysis revealed the relative change of PVR after NO inhalation as a predictor of survival. Patients whose PVR during NO inhalation declined below 789.8 dynes.s.cm-5 had significantly better outcome than patients with above median PVR. There was a strong negative correlation between the relative change of PVR under NO and recurrent pulmonary hypertension after PEA (p=0.02). Conclusions: Patients with operable CTEPH demonstrated acute pulmonary vascular reactivity, mostly not corresponding to a complete responder status, but accounting for a wide range of decreases of mPAP [change of mPAP (%) (−10.9±14)] and PVR [change of PVR (%) (−17 ±15)]. Reduction of PVR under 800 dynes.s.cm-5 after inhalation of NO was associated with better outcome. Responsiveness to inhaled nitric oxide is a predictor for mid-term survival in adult patients with CTEPH undergoing PEA.


Sign in / Sign up

Export Citation Format

Share Document