scholarly journals Vasoreactivity Test to Evaluate the Pulmonary Vascular Resistance and Mean Pulmonary Arterial Pressure by Doppler Echocardiography

2019 ◽  
Vol 2 (3) ◽  
pp. 01-11
Author(s):  
Tania T. Muñoz H
1980 ◽  
Vol 239 (3) ◽  
pp. H297-H301 ◽  
Author(s):  
L. G. Moore ◽  
J. T. Reeves

Pregnancy decreases systemic vascular reactivity but comparatively little is known about the effects of pregnancy on the pulmonary circulation. Pulmonary vascular resistance (PVR) during acute hypoxia was lower (P < 0.01) in eight intact anesthetized pregnant dogs compared to the same animals postpartum. Mean pulmonary arterial pressure (Ppa) and PVR during infusion of prostaglandin (PG) F2 alpha were also reduced during pregnancy. Nonpregnant female dogs (n = 5) treated with estrogen (0.001 mg x kg-1 x da-1) for 2 wk had decreased Ppa (P < 0.01) during acute hypoxia compared to control measurements, but PVR was unchanged during hypoxia and PGF2 alpha infusion. Treatment with progesterone in four dogs had no effect on pulmonary vascular reactivity to hypoxia or PGF2 alpha. Inhibition of circulating PG with meclofenamate in four dogs during pregnancy did not appear to restore pulmonary vascular reactivity. Blunted pulmonary vascular reactivity is suggested by the limited data available for women, but is not seen in pregnant cows. We conclude that pregnancy decreases pulmonary as well as systemic vascular reactivity in the dog, but the mechanism is unclear.


1979 ◽  
Vol 46 (1) ◽  
pp. 184-188 ◽  
Author(s):  
L. G. Moore ◽  
J. T. Reeves ◽  
D. H. Will ◽  
R. F. Grover

Observations in several species suggest that pulmonary vascular reactivity may be reduced during pregnancy. We tested this hypothesis in two groups of unanesthetized cows, one “susceptible” and one “resistant” to high mountain or brisket disease. At the altitude of residence (1,524 m), mean pulmonary arterial pressure was elevated during pregnancy by 18% and total pulmonary vascular resistance by 32% in susceptible but not in resistant cows. During acute exposure to simulated altitudes of 2,120--4,550 m, pulmonary arterial pressure was increased by 16% and total pulmonary resistance by 28% during pregnancy in susceptible cows. The pulmonary pressor response to a 5 microgram/kg bolus of prostaglandin FIalpha was not different during pregnancy in either group. Resistant cows hyperventilated while pregnant, raising arterial partial pressure of oxygen (PaO2) by 6 Torr both at 1,524 m and, on the average, by 7 Torr at altitudes of 2,120--4,550 m. Susceptible cows increased their PaO2 less than did the resistant cows during pregnancy. The results indicated that pregnancy was associated with a greater rise in pulmonary arterial pressure and total pulmonary vascular resistance during acute hypoxia and failed to elicit as great a ventilatory response in susceptible than in resistant cows.


2004 ◽  
Vol 97 (2) ◽  
pp. 515-521 ◽  
Author(s):  
Claudia Höhne ◽  
Martin O. Krebs ◽  
Manuela Seiferheld ◽  
Willehad Boemke ◽  
Gabriele Kaczmarczyk ◽  
...  

Acute hypoxia increases pulmonary arterial pressure and vascular resistance. Previous studies in isolated smooth muscle and perfused lungs have shown that carbonic anhydrase (CA) inhibition reduces the speed and magnitude of hypoxic pulmonary vasoconstriction (HPV). We studied whether CA inhibition by acetazolamide (Acz) is able to prevent HPV in the unanesthetized animal. Ten chronically tracheotomized, conscious dogs were investigated in three protocols. In all protocols, the dogs breathed 21% O2 for the first hour and then 8 or 10% O2 for the next 4 h spontaneously via a ventilator circuit. The protocols were as follows: protocol 1: controls given no Acz, inspired O2 fraction (FiO2) = 0.10; protocol 2: Acz infused intravenously (250-mg bolus, followed by 167 μg·kg−1·min−1 continuously), FiO2 = 0.10; protocol 3: Acz given as above, but with FiO2 reduced to 0.08 to match the arterial Po2 (PaO2) observed during hypoxia in controls. PaO2 was 37 Torr during hypoxia in controls, mean pulmonary arterial pressure increased from 17 ± 1 to 23 ± 1 mmHg, and pulmonary vascular resistance increased from 464 ± 26 to 679 ± 40 dyn·s−1·cm−5 ( P < 0.05). In both Acz groups, mean pulmonary arterial pressure was 15 ± 1 mmHg, and pulmonary vascular resistance ranged between 420 and 440 dyn·s−1·cm−5. These values did not change during hypoxia. In dogs given Acz at 10% O2, the arterial PaO2 was 50 Torr owing to hyperventilation, whereas in those breathing 8% O2 the PaO2 was 37 Torr, equivalent to controls. In conclusion, Acz prevents HPV in conscious spontaneously breathing dogs. The effect is not due to Acz-induced hyperventilation and higher alveolar Po2, nor to changes in plasma endothelin-1, angiotensin-II, or potassium, and HPV suppression occurs despite the systemic acidosis with CA inhibition.


Respiration ◽  
2000 ◽  
Vol 67 (5) ◽  
pp. 502-506 ◽  
Author(s):  
Akira Nakamura ◽  
Norio Kasamatsu ◽  
Ikko Hashizume ◽  
Takushi Shirai ◽  
Suguru Hanzawa ◽  
...  

1983 ◽  
Vol 55 (2) ◽  
pp. 558-561 ◽  
Author(s):  
J. Lindenfeld ◽  
J. T. Reeves ◽  
L. D. Horwitz

In resting conscious dogs, administration of cyclooxygenase inhibitors results in modest increases in pulmonary arterial pressure and pulmonary vascular resistance, suggesting that vasodilator prostaglandins play a role in maintaining the low vascular resistance in the pulmonary bed. To assess the role of these vasodilator prostaglandins on pulmonary vascular resistance during exercise, we studied seven mongrel dogs at rest and during exercise before and after intravenous meclofenamate (5 mg/kg). Following meclofenamate, pulmonary vascular resistance rose both at rest (250 24 vs. 300 +/- 27 dyn . s . cm-5, P less than 0.01) and with exercise (190 +/- 9 vs. 210 +/- 12 dyn . s . cm-5, P less than 0.05). Systemic vascular resistance rose slightly following meclofenamate both at rest and during exercise. There were no changes in cardiac output. The effects of cyclooxygenase inhibition, although significant, were less during exercise than at rest. This suggests that the normal fall in pulmonary vascular resistance during exercise depends largely on factors other than vasodilator prostaglandins.


1992 ◽  
Vol 73 (4) ◽  
pp. 1474-1480 ◽  
Author(s):  
C. M. Tseng ◽  
S. Qian ◽  
W. Mitzner

Changes in pulmonary hemodynamics and vascular reactivity in emphysematous hamsters were studied in an isolated lung preparation perfused at constant flow with blood and 3% dextran. Hamsters were treated with intratracheal porcine pancreatic elastase at 70 days of age, and experimental studies were conducted at 1, 3, and 8 mo after treatment. Baseline pulmonary arterial pressure in elastase-treated lungs was increased compared with saline-treated control lungs 1 mo after treatment, but this increase did not progress at 3 and 8 mo. Increases in pulmonary arterial pressure in elastase-treated lungs were temporally correlated with the morphological development of emphysema and right ventricular hypertrophy; both of these were evident at 1 mo after treatment and showed little change thereafter. Pressor responses to hypoxia and angiotensin II were not different between elastase-treated and control lungs at 1 and 3 mo. At 8 mo, however, pressor responses in emphysematous lungs to 0% O2 (but not to angiotensin II) were significantly increased. This was the result of a lack of the normal age-related fall in the hypoxic pressor response. Our results suggest that the right ventricular hypertrophy found in these emphysematous animals results from a chronically increased pulmonary vascular resistance. Furthermore, increases in pulmonary vascular resistance in the early development of emphysema are likely a result of the loss of vascular beds and supporting connective tissue.


1994 ◽  
Vol 77 (3) ◽  
pp. 1333-1340 ◽  
Author(s):  
K. Kubo ◽  
T. Kobayashi ◽  
T. Hayano ◽  
T. Koizumi ◽  
T. Honda ◽  
...  

The purpose of the present study was to assess the role of polymorphonuclear leukocyte (neutrophil) elastase in endotoxin-induced acute lung injury in sheep with lung lymph fistula. We studied the effects of ONO-5046, a specific inhibitor of neutrophil elastase, on the lung dysfunction induced by the intravenous infusion of 1 microgram/kg of Escherichia coli endotoxin. Endotoxin alone produced a biphasic response as previously reported. Early (0.5–1 h) after endotoxin, pulmonary arterial pressure increased from 19.5 +/- 0.9 cmH2O at baseline to a peak of 46.8 +/- 2.4 cmH2O (P > 0.05). Pulmonary vascular resistance increased from 3.03 +/- 0.17 cmH2O.l–1.min at baseline to a peak of 9.77 +/- 0.70 cmH2O.l–1.min (P < 0.05). Circulating neutrophils decreased from 7,355 +/- 434/mm3 at baseline to a nadir of 1,762 +/- 32/mm3 (P < 0.05). Thromboxane B2 and 6-ketoprostaglandin F1 alpha concentrations in plasma and lung lymph were significantly increased. Late (3–5 h) after endotoxin, pulmonary arterial pressure and pulmonary vascular resistance returned to baseline levels, but lung lymph flow remained increased from 4.2 +/- 0.3 ml/0.5 h at baseline to 7.3 +/- 0.7 ml/0.5 h (P < 0.05), with a slight increase in lung lymph-to-plasma protein concentration ratio, suggesting increased pulmonary vascular permeability. The histopathological features of the lungs during the early period in sheep treated with endotoxin alone revealed a large increase in neutrophils per 100 alveoli and changes of pulmonary edema such as thickening of the interstitium of the lung and alveolar flooding.(ABSTRACT TRUNCATED AT 250 WORDS)


1956 ◽  
Vol 186 (1) ◽  
pp. 74-78 ◽  
Author(s):  
E. D. Frank ◽  
H. A. Frank ◽  
S. Jacob ◽  
H. A. E. Weizel ◽  
H. Korman ◽  
...  

Norepinephrine infusion did not prolong the survival or effect the recovery of dogs in hemorrhagic shock unresponsive to replacement transfusion. During its pressor action in shock, either before or after replacement transfusion, norepinephrine infusion increased coronary, cerebral and adrenal blood flow, reduced renal blood flow, and did not change hepatic blood flow. Cardiac output was increased in oligemic shock but not after blood replacement. Pulmonary arterial pressure and right and left auricular pressures were raised by norepinephrine infusion in all phases of hemorrhagic shock, and calculated pulmonary vascular resistance was reduced.


1985 ◽  
Vol 249 (1) ◽  
pp. R39-R43 ◽  
Author(s):  
F. L. Powell ◽  
R. H. Hastings ◽  
R. W. Mazzone

We measured mean pulmonary arterial pressure (Ppa) during temporary unilateral pulmonary arterial occlusion (TUPAO) in 10 ducks. Ppa increased from 11.4 +/- 0.8 mmHg during control conditions to 18.8 +/- 1.8 during TUPAO. In 5 of the 10 ducks we also measured mean left atrial pressure (Pla) and cardiac output (Q). In these ducks Ppa significantly increased with TUPAO from 13.9 +/- 0.4 to 22.0 +/- 1.2 mmHg, whereas Pla and Q did not change significantly. Pulmonary vascular resistance (PVR) increased from 10.6 +/- 1.3 to 24.1 +/- 5.3 mmHg X min X 1(-1) on TUPAO. By assuming equal vascular resistance in either lung it can be calculated that the vascular resistance in only one lung was 22.5 +/- 3.5 mmHg X min X 1(-1) during control conditions. Thus doubling flow resulted in no significant change in one lung's vascular resistance. A morphometric study of both lungs of a domestic goose that were rapidly frozen during TUPAO indicated very little compliance in pulmonary blood capillaries. The relative volume of exchange tissue occupied by blood capillaries was 0.28 in the occluded lung and 0.36 in the perfused lung. Surface-to-volume ratios of blood capillaries were 12,524 cm-1 in the occluded lung and 11,056 cm-1 in the perfused lung. We conclude that PVR in birds is relatively insensitive to changes in Q, in contrast to mammals.


1994 ◽  
Vol 76 (4) ◽  
pp. 1794-1801 ◽  
Author(s):  
T. D. Jacob ◽  
D. K. Nakayama ◽  
I. Seki ◽  
R. Exler ◽  
J. R. Lancaster ◽  
...  

We describe the hemodynamic effects and metabolic fate of inhaled NO gas in 12 anesthetized piglets. Pulmonary and systemic hemodynamic responses to incremental [NO] (5–80 ppm) were tested during ventilation with high- [0.30 inspired O2 fraction (FIO2)] and low-O2 (0.10 FIO2) mixtures. In six animals, inhalation of 40 ppm NO was maintained over 6 h to test effects of prolonged exposure (0.30 FIO2). In the other six animals, pulmonary hypertension was induced by hypoxic ventilation (0.10 FIO2) and responses to NO were tested. Inhaled low [NO] partially reversed pulmonary hypertension induced by alveolar hypoxia; mean pulmonary arterial pressure decreased from 31.4 +/- 2.3 mmHg during hypoxia to 18.2 +/- 1.2 mmHg during 5 ppm NO. Mean pulmonary arterial pressure at 0.10 FIO2 did not fall further at higher [NO] (10–40 ppm) and never reached control levels. Pulmonary vascular resistance increased with institution of hypoxic ventilation and fell with subsequent administration of NO, ultimately reaching control levels. Inhaled NO did not affect systemic vascular resistance. Plasma levels of NO2- + NO3- and methemoglobin (MetHb) levels increased with increasing [NO]. Over 6 h of NO administration during high-O2 ventilation, MetHb equilibrated at subtoxic levels while NO2- + NO3- increased. Nitrosylhemoglobin, analyzed by electron paramagnetic resonance spectrophotometry was not detected in blood at any time. At the relatively low concentrations (5–80 ppm) that are effective in relieving experimental pulmonary hypertension induced by alveolar hypoxia, inhaled NO gas causes accumulation of NO2- + NO3- in plasma and a small increase in MetHb but no detectable nitrosylhemoglobin.


Sign in / Sign up

Export Citation Format

Share Document