Protein phosphorylation in cardiac and vascular smooth muscle

1981 ◽  
Vol 241 (2) ◽  
pp. H117-H128 ◽  
Author(s):  
M. Barany ◽  
K. Barany

In the heart and arterial smooth muscles, several proteins are phosphorylated. This review summarizes our current knowledge about these phosphoproteins and their possible role in the function of these muscles. In the contractile apparatus, the phosphorylation of myosin light chain seems to be an integral part of the contraction cycle of arterial smooth muscle. However, in the heart the relationship between light chain phosphorylation-dehosphorylation and systolic-diastolic states remains open. In the heart, the phosphorylation of the inhibitory subunit of troponin, a myofibrillar protein, parallels the positive inotropic response induced by beta-adrenergic agonists. It seems likely that this phosphorylation is involved in the physiological stimulation of the heart by epinephrine. Cardiac sarcoplasmic reticulum contains a low-molecular-weight protein, phospholamban, the phosphorylation of which is required for Ca2+ transport. Ion fluxes through the heart sarcolemma may also be controlled through membrane protein phosphorylation. Key enzymes of the energy-yielding pathways in the heart, the pyruvate dehydrogenase multienzyme complex and phosphorylase, are turned on and off by phosphorylation-dephosphorylation mechanisms. Our understanding of protein phosphorylation in the heart has advanced greatly. In contrast, with the exception of the myosin light chain, much less is known about the many proteins phosphorylated in arterial smooth muscle.

2002 ◽  
Vol 364 (2) ◽  
pp. 431-440 ◽  
Author(s):  
Mitsuo MITA ◽  
Hayato YANAGIHARA ◽  
Shigeru HISHINUMA ◽  
Masaki SAITO ◽  
Michael P. WALSH

Depolarization of the sarcolemma of smooth muscle cells activates voltage-gated Ca2+ channels, influx of Ca2+ and activation of cross-bridge cycling by phosphorylation of myosin catalysed by Ca2+/calmodulin-dependent myosin light-chain kinase (MLCK). Agonist stimulation of smooth muscle contraction often involves other kinases in addition to MLCK. In the present study, we address the hypothesis that membrane depolarization-induced contraction of rat caudal arterial smooth muscle may involve activation of Rho-associated kinase (ROK). Addition of 60mM K+ to de-endothelialized muscle strips in the presence of prazosin and propranolol induced a contraction that peaked rapidly and then declined to a steady level of force corresponding to approx. 30% of the peak contraction. This contractile response was abolished by the Ca2+-channel blocker nicardipine or the removal of extracellular Ca2+. An MLCK inhibitor (ML-9) inhibited both the phasic and tonic components of K+-induced contraction. On the other hand, the ROK inhibitors Y-27632 and HA-1077 abolished the tonic component of K+-induced contraction, and slightly reduced the phasic component. Phosphorylation levels of the 20-kDa light chain of myosin increased rapidly in response to 60mM K+ and subsequently declined to a steady-state level significantly greater than the resting level. Y-27632 abolished the sustained and reduced the phasic elevation of the phosphorylation of the 20-kDa light chain of myosin, without affecting the K+-induced elevation of cytosolic free Ca2+ concentration. These results indicate that ROK activation plays an important role in the sustained phase of K+-induced contraction of rat caudal arterial smooth muscle, but has little involvement in the phasic component of K+-induced contraction. Furthermore, these results are consistent with inhibition of myosin light-chain phosphatase by ROK, which would account for the sustained elevation of myosin phosphorylation and tension in response to membrane depolarization.


1995 ◽  
Vol 268 (5) ◽  
pp. L739-L746 ◽  
Author(s):  
H. Jiang ◽  
K. Rao ◽  
X. Liu ◽  
G. Liu ◽  
N. L. Stephens

The increased shortening velocity and capacity of airway smooth muscle (ASM) from ragweed pollen-sensitized dogs, which may be responsible for its in vivo airway hyperresponsiveness, have been shown to be associated with higher actomyosin adenosinetriphosphatase activity and greater level of phosphorylation of the 20-kDa myosin light-chain (MLC20) at rest and during contraction. Current studies show that the elevated level of phosphorylation may be the result of an increased myosin light-chain kinase (MLCK) activity due to excessive quantity of MLCK. There were no significant changes in total activity of calmodulin, a protein that binds and activates MLCK, in sensitized dog ASM (SASM) compared with control ASM (CASM). When normalized to the relative calmodulin content in the tissues, the specific calmodulin activities (means +/- SE) in sensitized tracheal smooth muscle (STSM) and sensitized bronchial smooth muscle (SBSM) and in their controls were not different (STSM 0.359 +/- 0.117, CTSM 0.339 +/- 0.136. SBSM 0.201 +/- 0.098, and control bronchial smooth muscle 0.213 +/- 0.056 nmol Pi.calmodulin content-1.min-1, respectively). Intracellular Ca2+ levels indicated by fura 2 fluorescent dye remained unaltered in SASM. We conclude that airway hyperresponsiveness may result from higher MLCK content in SASM rather than from changes in Ca(2+)-calmodulin activities, which is an example of alteration in Ca2- sensitivity of ASM.


2000 ◽  
Vol 349 (3) ◽  
pp. 797-804 ◽  
Author(s):  
Aki YAMADA ◽  
Osamu SATO ◽  
Minoru WATANABE ◽  
Michael P. WALSH ◽  
Yasuo OGAWA ◽  
...  

Ruthenium Red (RuR) is widely used as an inhibitor of ryanodine receptor Ca2+ release channels, but has additional effects such as the induction of Ca2+ sensitization of contraction of permeabilized smooth muscles. To address the mechanism underlying this process, we examined the effects of RuR on contractility in permeabilized guinea-pig ileum and on the activity of myosin-light-chain phosphatase (MP). RuR increased the force at submaximal [Ca2+] (pCa 6.3) approx. 4-fold. This effect was not observed after thiophosphorylation of MP. RuR also seemed capable of preventing the thiophosphorylation of MP, suggesting a direct interaction of RuR with MP. Consistent with this possibility, smooth-muscle MP was inhibited by RuR in a concentration-dependent manner (IC50 23µM). Exogenous calmodulin significantly increased RuR-induced contraction at pCa 6.3 but had little effect on contraction induced by microcystin at this [Ca2+]. Ca2+-independent contraction was induced by RuR (EC50 843µM) and by microcystin (EC50 59nM) but the maximal force induced by RuR was smaller than that induced by microcystin. The addition of 300µM RuR enhanced the contraction induced by 30nM microcystin but markedly decreased that induced by 1µM microcystin. Such a dual action of RuR on microcystin-induced effects was not observed in experiments using purified MP. We conclude that the RuR-induced Ca2+ sensitization of smooth-muscle contraction is due to the direct inhibition of MP by RuR.


1988 ◽  
Vol 92 (6) ◽  
pp. 713-729 ◽  
Author(s):  
B Himpens ◽  
G Matthijs ◽  
A V Somlyo ◽  
T M Butler ◽  
A P Somlyo

The time course of [Ca2+]i, tension, and myosin light chain phosphorylation were determined during prolonged depolarization with high K+ in intact tonic (rabbit pulmonary artery) and phasic (longitudinal layer of guinea pig ileum) smooth muscles. [Ca2+]i was monitored with the 340 nm/380 nm signal ratio of the fluorescent indicator fura-2. The fluorescence ratio had a similar time course in both muscle types during depolarization with 109 mM [K+]o; after a transient peak, there was a decline to 70% of its peak value in tonic smooth muscle, and to 60% in phasic smooth muscle. Tension, however, continued to increase in the pulmonary artery, while in the ileum it declined in parallel with the [Ca2+]i. On changing [K+]o from 109 to 20 mM, tension and [Ca2+]i either remained unchanged or declined in parallel in the pulmonary artery. Phosphorylation of the 20-kD myosin light chain, measured during stimulation of muscle strips with 109 mM [K+]o in another set of experiments, increased from 3% to a peak of 50% in the intact pulmonary artery, and then declined to a steady state value of 23%. In the intact ileum, a very rapid, early transient phosphorylation (up to 50%) at 2-3 s was seen. This transient declined by 30 s to a value that was close to the resting level (7%), while tension remained at 55% of its peak force. A quick release during maintained stimulation induced no detectable change in the [Ca2+]i in either type of smooth muscle. We discuss the possibility that the slowly rising tonic tension in pulmonary artery could be due to cooperativity between phosphorylated and nonphosphorylated crossbridges.


2000 ◽  
Vol 279 (6) ◽  
pp. C1722-C1732 ◽  
Author(s):  
Ozgur Ogut ◽  
Frank V. Brozovich

Smooth muscle is generally grouped into two classes of differing contractile properties. Tonic smooth muscles show slow rates of force activation and relaxation and slow speeds of shortening ( V max) but force maintenance, whereas phasic smooth muscles show poor force maintenance but have fast V max and rapid rates of force activation and relaxation. We characterized the development of gizzard and aortic smooth muscle in embryonic chicks to identify the cellular determinants that define phasic (gizzard) and tonic (aortic) contractile properties. Early during development, tonic contractile properties are the default for both tissues. The gizzard develops phasic contractile properties between embryonic days ( ED) 12 and 20, characterized primarily by rapid rates of force activation and relaxation compared with the aorta. The rapid rate of force activation correlates with expression of the acidic isoform of the 17-kDa essential myosin light chain (MLC17a). Previous data from in vitro motility assays (Rover AS, Frezon Y, and Trybus KM. J Muscle Res Cell Motil 18: 103–110, 1997) have postulated that myosin heavy chain (MHC) isoform expression is a determinant for V max in intact tissues. In the current study, differences in V max did not correlate with previously published differences in MHC or MLC17a isoforms. Rather, V max was increased with thiophosphorylation of the 20-kDa regulatory myosin light chain (MLC20) in the gizzard, suggesting that a significant internal load exists. Furthermore, V max in the gizzard increased during postnatal development without changes in MHC or MLC17 isoforms. Although the rate of MLC20 phosphorylation was similar at ED 20, the rate of MLC20 dephosphorylation was significantly higher in the gizzard versus the aorta, correlating with expression of the M130 isoform of the myosin binding subunit in the myosin light chain phosphatase (MLCP) holoenzyme. These results indicate that unique MLCP and MLC17 isoform expression marks the phasic contractile phenotype.


2000 ◽  
Vol 352 (2) ◽  
pp. 573-582 ◽  
Author(s):  
Lynn P. WEBER ◽  
Minoru SETO ◽  
Yasuharu SASAKI ◽  
Karl SWÄRD ◽  
Michael P. WALSH

Myosin light-chain phosphorylation is the primary mechanism for activating smooth-muscle contraction and occurs principally at Ser-19 of the 20kDa light chains of myosin (LC20). In some circumstances, Thr-18 phosphorylation may also occur. Protein kinase C (PKC) can regulate LC20 phosphorylation indirectly via signalling pathways leading to inhibition of myosin light-chain phosphatase. The goal of this study was to determine the relative importance of myosin light-chain kinase (MLCK) and PKC in basal and stimulated LC20 phosphorylation in rat tail arterial smooth-muscle strips (RTA). Two MLCK inhibitors (ML-9 and wortmannin) and two PKC inhibitors (chelerythrine and calphostin C) that have different mechanisms of action were used. Results showed the following: (i) basal LC20 phosphorylation in intact RTA is mediated by MLCK; (ii) α1-adrenoceptor stimulation increases LC20 phosphorylation via MLCK and PKC; (iii) Ca2+-induced LC20 phosphorylation in Triton X-100-demembranated RTA is catalysed exclusively by MLCK, consistent with the quantitative loss of PKCs α and β following detergent treatment; (iv) very little LC20 diphosphorylation (i.e. Thr-18 phosphorylation) occurs in intact or demembranated RTA at rest or in response to contractile stimuli; and (v) the level of LC20 phosphorylation correlates with contraction in intact and demembranated RTA, although the steady-state tension–LC20 phosphorylation relationship is markedly different between the two preparations such that the basal level of LC20 phosphorylation in intact muscles is sufficient to generate maximal force in demembranated preparations. This may be due, in part, to differences in the phosphatase/kinase activity ratio, resulting from disruption of a signalling pathway leading to myosin light-chain phosphatase inhibition following detergent treatment.


Sign in / Sign up

Export Citation Format

Share Document