tonic smooth muscle
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 1)

H-INDEX

11
(FIVE YEARS 0)

Author(s):  
Gregory C. Amberg ◽  
Ji Yeon Lee ◽  
Sang Don Koh ◽  
Kenton M. Sanders

Transient outward, or "A-type" currents are rapidly inactivating voltage gated potassium currents that operate at negative membrane potentials. A-type currents have not been reported in the gastric fundus, a tonic smooth muscle. We used whole-cell voltage-clamp to identify and characterize A-type currents in smooth muscle cells (SMCs) isolated from murine fundus. A-type currents were robust in these cells with peak amplitudes averaging 1.5nA at 0 mV. Inactivation was rapid with a time constant of 71ms at 0 mV; recovery from inactivation at -80 mV was similarly rapid with a time constant of 75ms. A-type currents in fundus were blocked by 4-aminopyridine (4-AP), flecainide and phrixotoxon-1 (PaTX1). Remaining currents after 4-AP and PaTX1 displayed half-activation potentials that were shifted to more positive potentials and showed incomplete inactivation. Currents after TEA displayed half inactivation at -48.1±1.0 mV. Conventional microelectrode and contractile experiments on intact fundus muscles showed that 4-AP depolarized membrane potential and increased tone under conditions in which enteric neurotransmission was blocked. These data suggest that A-type K+ channels in fundus SMCs are likely active at physiological membrane potentials, and sustained activation of A-type channels contributes to the negative membrane potentials of this tonic smooth muscle. Quantitative analysis of Kv4 expression showed that Kcnd3 was dominantly expressed in fundus SMCs. These data were confirmed by immunohistochemistry which revealed Kv4.3-like immunoreactivity within the tunica muscularis. These observations indicate that Kv4 channels likely form the A-type current in murine fundus SMCs.


2015 ◽  
Vol 308 (7) ◽  
pp. G605-G612 ◽  
Author(s):  
Satish Rattan ◽  
Mehboob Ali

Preliminary proteomics studies between tonic vs. phasic smooth muscles identified three distinct protein spots identified to be those of transgelin (SM22). The latter was found to be distinctly downregulated in the internal anal sphincter (IAS) vs. rectal smooth muscle (RSM) SMC. The major focus of the present studies was to examine the differential molecular control mechanisms by SM22 in the functionality of truly tonic smooth muscle of the IAS vs. the adjoining phasic smooth muscle of the RSM. We monitored SMC lengths before and after incubation with pFLAG-SM22 (for SM22 overexpression), and SM22 small-interfering RNA. pFLAG-SM22 caused concentration-dependent and significantly greater relaxation in the IAS vs. the RSM SMCs. Conversely, temporary silencing of SM22 caused contraction in both types of the SMCs. Further studies revealed a significant reverse relationship between the levels of SM22 phosphorylation and the amount of SM22-actin binding in the IAS and RSM SMC. Data showed higher phospho-SM22 levels and decreased SM22-actin binding in the IAS, and reverse to be the case in the RSM SMCs. Experiments determining the mechanism for SM22 phosphorylation in these smooth muscles revealed that Y-27632 (Rho kinase inhibitor) but not Gö-6850 (protein kinase C inhibitor) caused concentration-dependent decreased phosphorylation of SM22. We speculate that SM22 plays an important role in the regulation of basal tone via Rho kinase-induced phosphorylation of SM22.


2014 ◽  
Vol 306 (2) ◽  
pp. H163-H172 ◽  
Author(s):  
John J. Reho ◽  
Xiaoxu Zheng ◽  
Steven A. Fisher

Each regional circulation has unique requirements for blood flow and thus unique mechanisms by which it is regulated. In this review we consider the role of smooth muscle contractile diversity in determining the unique properties of selected regional circulations and its potential influence on drug targeting in disease. Functionally smooth muscle diversity can be dichotomized into fast versus slow contractile gene programs, giving rise to phasic versus tonic smooth muscle phenotypes, respectively. Large conduit vessel smooth muscle is of the tonic phenotype; in contrast, there is great smooth muscle contractile diversity in the other parts of the vascular system. In the renal circulation, afferent and efferent arterioles are arranged in series and determine glomerular filtration rate. The afferent arteriole has features of phasic smooth muscle, whereas the efferent arteriole has features of tonic smooth muscle. In the splanchnic circulation, the portal vein and hepatic artery are arranged in parallel and supply blood for detoxification and metabolism to the liver. Unique features of this circulation include the hepatic-arterial buffer response to regulate blood flow and the phasic contractile properties of the portal vein. Unique features of the pulmonary circulation include the low vascular resistance and hypoxic pulmonary vasoconstriction, the latter attribute inherent to the smooth muscle cells but the mechanism uncertain. We consider how these unique properties may allow for selective drug targeting of regional circulations for therapeutic benefit and point out gaps in our knowledge and areas in need of further investigation.


2013 ◽  
Vol 305 (4) ◽  
pp. G314-G324 ◽  
Author(s):  
Othman Al-Shboul ◽  
Sunila Mahavadi ◽  
Wimolpak Sriwai ◽  
John R. Grider ◽  
Karnam S. Murthy

Previous studies have identified differences in the expression of proteins that regulate myosin light chain phosphorylation and contraction in tonic and phasic smooth muscle. cGMP plays a critical role in smooth muscle relaxation and is important for optimal function of phasic and tonic smooth muscle. The intracellular cGMP levels are regulated by its hydrolysis via phosphodiesterase 5 (PDE5) and efflux via novel multidrug resistance protein 5 (MRP5). In the present study we tested the hypothesis that the differences in the phasic and tonic behavior of smooth muscles may be related to differences in mechanisms that terminate cGMP signaling. Expression of PDE5 and MRP5 was significantly (more than 2-fold) higher in fundus compared with antrum. The NO donor S-nitrosoglutathione (GSNO) caused an increase in PDE5 activity and intra- and extracellular cGMP levels in both fundus and antrum. Stimulation of PDE5 activity and increase in extracellular cGMP were significantly higher in fundus, whereas increase in intracellular cGMP was significantly higher in antrum. GSNO-induced increase in extracellular cGMP was blocked in dispersed cells by the cyclic nucleotide export blocker probenecid and in cultured muscle cells by depletion of ATP or suppression of MRP5 by siRNA, providing evidence that cGMP efflux was mediated by ATP-dependent export via MRP5. Consistent with the higher expression and activity levels of PDE5 and MRP5, GSNO-induced PKG activity and muscle relaxation were significantly lower in muscle cells from fundus compared with antrum. Thus higher expression of PDE5 and MRP5 in muscle cells from fundus correlates with tonic phenotype of muscle.


2010 ◽  
Vol 298 (6) ◽  
pp. G962-G969 ◽  
Author(s):  
Satish Rattan

RhoA prenylation may play an important step in the translocation of RhoA in the basal internal anal sphincter (IAS) smooth muscle tone. Statins inhibit downstream posttranslational RhoA prenylation by 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibition (HMGCRI). The role of statins in relation to RhoA prenylation in the pathophysiology of the spontaneously tonic smooth muscle has not been investigated. In the present studies, we determined the effect of classical HMGCRI simvastatin on the basal IAS tone and RhoA prenylation and in the levels of RhoA/Rho kinase (ROCK) in the cytosolic vs. membrane fractions of the smooth muscle. Simvastatin produced concentration-dependent decrease in the IAS tone (via direct actions at the smooth muscle cells). The decrease in the IAS tone by simvastatin was associated with the decrease in the prenylation of RhoA, as well as RhoA/ROCK in the membrane fractions of the IAS, in the basal state. The inhibitory effects of the HMGCRI were completely reversible by geranylgeranyltransferase substrate geranylgeranyl pyrophosphate. Relaxation of the IAS smooth muscle via HMGCRI simvastatin is mediated via the downstream decrease in the levels of RhoA prenylation and ROCK activity. Studies support the concept that RhoA prenylation leading to RhoA/ROCK translocation followed by activation is important for the basal tone in the IAS. Data suggest that the role of HMG-CoA reductase may go beyond cholesterol biosynthesis, such as the regulation of the smooth muscle tone. The studies have important implications in the pathophysiological mechanisms and in the novel therapeutic approaches for anorectal motility disorders.


2008 ◽  
Vol 294 (3) ◽  
pp. G687-G693 ◽  
Author(s):  
Satish Rattan ◽  
Chirag A. Patel

The selectivity of different Rho kinase (ROCK) inhibitors in the spontaneously tonic smooth muscle has not been investigated. We examined this issue using Y-27632 [(R)-(+)- trans- N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarbox anecarboxamide, 2HCl], H-1152 [(S)-(+)-(2-methyl-5-isoquinolinyl) sulfonylhomopiperazine, 2HCl], HA-1077 [(5 isoquinolinesulfonyl) homopiperazine, 2HCl], and ROCK inhibitor II [ N-(4-pyridyl)- N′-(2,4,6-trichlorophenyl)urea]. We compared these inhibitors in the spontaneously tonic smooth muscle of the internal anal sphincter (IAS). ROCK, protein kinase C (PKC), and myosin light chain kinase (MLCK) activities were determined in the IAS, before and after different ROCK inhibitors. Y-27632 and H-1152 were ∼30-fold more potent in the IAS (IC50: 4.4 × 10−7 and 7.9 × 10−8 M, respectively) vs. the phasic rectal smooth muscle (RSM) (IC50: 1.3 × 10−5 and 2.5 × 10−6 M, respectively). HA-1077 and ROCK inhibitor II were equipotent in the IAS vs. RSM. In the IAS, H-1152 was the most potent whereas ROCK inhibitor II is the least. Y-27632 and H-1152 caused concentration-dependent decrease in the IAS tone that correlates directly with the decreases in ROCK activity, without significant effect in the PKC and MLCK activities. This specifically selective correlation between ROCK activity and decrease in the IAS tone was absent in the case of HA-1077 and ROCK inhibitor II, which also inhibited PKC and MLCK. We conclude that the IAS tone is critically dependent on ROCK activity, and H-1152 and Y-27632 are the most selective and potent ROCK inhibitors in the IAS.


2007 ◽  
Vol 93 (10) ◽  
pp. 3555-3566 ◽  
Author(s):  
Miriam F. Halstead ◽  
Katalin Ajtai ◽  
Alan R. Penheiter ◽  
Joshua D. Spencer ◽  
Ye Zheng ◽  
...  

2006 ◽  
Vol 291 (5) ◽  
pp. G830-G837 ◽  
Author(s):  
Chirag A. Patel ◽  
Satish Rattan

The internal anal sphincter (IAS) tone is important for the rectoanal continence. The RhoA/Rho kinase (ROK) pathway has been associated with the agonist-induced sustained contraction of the smooth muscle, but its role in the spontaneously tonic smooth muscle is not known. Present studies compared expression of different components of the RhoA/ROK pathway between the IAS (a truly tonic SM), the rectal smooth muscle (RSM) (a mixture of phasic and tonic), and anococcygeus smooth muscle (ASM) (a purely phasic SM) of rat. RT-PCR and Western blot analyses were performed to determine RhoA, ROCK-II, CPI-17, MYPT1, and myosin light-chain 20 (MLC20). Phosphorylated CPI-17 at threonine-38 residue (pThr38-CPI-17), MYPT1 at threonine-696 residue (pThr696-MYPT1), and MLC20 at threonine-18/serine-19 residues (pThr18/Ser19-MLC20) were also determined in the basal state and after pretreatment with the ROK inhibitor Y 27632. In addition, we compared the effect of Y 27632 on the basal isometric tension and ROK activity in the IAS vs. the RSM. Our data show the highest levels of RhoA, ROCK-II, CPI-17, MLC20, and of phospho-MYPT1, -CPI-17, and -MLC20 in the IAS followed by in the RSM and ASM. Conversely, MYPT1 levels were lowest in the IAS and highest in the ASM. In the IAS, Y 27632 caused a concentration-dependent decrease in the basal tone, levels of phospho-MYPT1, -CPI-17, and -MLC20, and ROK activity. We conclude that RhoA/ROK plays a critical role in the basal tone in the IAS by the inhibition of MLC phosphatase via the phosphorylation of MYPT1 and CPI-17.


Sign in / Sign up

Export Citation Format

Share Document