Electrical uncoupling and impulse propagation in isolated sheep Purkinje fibers

1989 ◽  
Vol 257 (1) ◽  
pp. H179-H189 ◽  
Author(s):  
J. Jalife ◽  
S. Sicouri ◽  
M. Delmar ◽  
D. C. Michaels

Alterations in electrical coupling may have a major role in the development of cardiac rhythm and conduction disturbances. We have used microelectrodes and linear Purkinje fibers to analyze the relative importance of cell-to-cell coupling on action potential propagation and to study the changes in the relationship between conduction velocity (theta) and upstroke velocity (Vmax) induced by three agents (heptanol, hypertonic solution, and ouabain) known to alter gap junction resistance. Heptanol superfusion (1.5–3.0 mM) reversibly led to a major decrease in theta and ultimately to block at a time when Vmax had been reduced by approximately 38%. Conduction delay was closely correlated with an increase in intracellular resistance (Ri), calculated as the sum of myoplasmic and junctional resistances, assuming a one-dimensional cable model. Qualitatively similar results were obtained by superfusion with 0.1–0.5 mM ouabain or hypertonic Tyrode solution (up to 600 mM sucrose added) instead of heptanol. In contrast, when the Vmax vs. theta relationship was studied by changing the KCl from 4 to 20 mM, decreases in Vmax correlated well with changes in theta. No significant effects on Ri were observed during KCl superfusion. Finally, we developed a computer model of action potential propagation along a one-dimensional strand of 90 electrically coupled heart cells. By changing systematically the degree of electrical coupling or the maximum sodium conductance in the model and by studying the effects of these changes on propagation and Vmax, we obtained strong evidence supporting the validity of our experimental results. The overall data provide testable predictions regarding the role of electrical uncoupling on abnormal impulse propagation.

1988 ◽  
Vol 254 (6) ◽  
pp. H1157-H1166 ◽  
Author(s):  
J. A. Wasserstrom ◽  
J. J. Salata

We studied the effects of tetrodotoxin (TTX) and lidocaine on transmembrane action potentials and ionic currents in dog isolated ventricular myocytes. TTX (0.1-1 x 10(-5) M) and lidocaine (0.5-2 x 10(-5) M) decreased action potential duration, but only TTX decreased the maximum rate of depolarization (Vmax). Both TTX (1-2 x 10(-5) M) and lidocaine (2-5 x 10(-5) M) blocked a slowly inactivating toward current in the plateau voltage range. The voltage- and time-dependent characteristics of this current are virtually identical to those described in Purkinje fibers for the slowly inactivating inward Na+ current. In addition, TTX abolished the outward shift in net current at plateau potentials caused by lidocaine alone. Lidocaine had no detectable effect on the slow inward Ca2+ current and the inward K+ current rectifier, Ia. Our results indicate that 1) there is a slowly inactivating inward Na+ current in ventricular cells similar in time, voltage, and TTX sensitivity to that described in Purkinje fibers; 2) both TTX and lidocaine shorten ventricular action potentials by reducing this slowly inactivating Na+ current; 3) lidocaine has no additional actions on other ionic currents that contribute to its ability to abbreviate ventricular action potentials; and 4) although both agents shorten the action potential by the same mechanism, only TTX reduces Vmax. This last point suggests that TTX produces tonic block of Na+ current, whereas lidocaine may produce state-dependent Na+ channel block, namely, blockade of Na+ current only after Na+ channels have already been opened (inactivated-state block).


1998 ◽  
Vol 80 (2) ◽  
pp. 1011-1015 ◽  
Author(s):  
Matt Wachowiak ◽  
Lawrence B. Cohen

Wachowiak, Matt and Lawrence B. Cohen. Presynaptic afferent inhibition of lobster olfactory receptor cells: reduced action-potential propagation into axon terminals. J. Neurophysiol. 80: 1011–1015, 1998. Action-potential propagation into the axon terminals of olfactory receptor cells was measured with the use of voltage-sensitive dye imaging in the isolated spiny lobster brain. Conditioning shocks to the olfactory nerve, known to cause long-lasting suppression of olfactory lobe neurons, allowed the selective imaging of activity in receptor cell axon terminals. In normal saline the optical signal from axon terminals evoked by a test stimulus was brief (40 ms) and small in amplitude. In the presence of low-Ca2+/high-Mg2+ saline designed to reduce synaptic transmission, the test response was unchanged in time course but increased significantly in amplitude (57 ± 16%, means ± SE). This increase suggests that propagation into receptor cell axon terminals is normally suppressed after a conditioning shock; this suppression is presumably synaptically mediated. Thus our results show that presynaptic inhibition occurs at the first synapse in the olfactory pathway and that the inhibition is mediated, at least in part, via suppression of action-potential propagation into the presynaptic terminal.


Sign in / Sign up

Export Citation Format

Share Document