myelinated axons
Recently Published Documents


TOTAL DOCUMENTS

414
(FIVE YEARS 63)

H-INDEX

58
(FIVE YEARS 5)

Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
Jessica Grigoletto ◽  
Meir Schechter ◽  
Ronit Sharon

Ultrastructural, neurochemical, and molecular alterations within the striatum are associated with the onset and progression of Parkinson’s disease (PD). In PD, the dopamine-containing neurons in the substantia nigra pars compacta (SNc) degenerate and reduce dopamine-containing innervations to the striatum. The loss of striatal dopamine is associated with enhanced corticostriatal glutamatergic plasticity at the early stages of PD. However, with disease progression, the glutamatergic corticostriatal white matter tracts (WMTs) also degenerate. We analyzed the levels of Mu opioid receptors (MORs) in the corticostriatal WMTs, as a function of α-Synuclein (α-Syn) toxicity in transgenic mouse brains. Our data show an age-dependent loss of MOR expression levels in the striatum and specifically, within the caudal striatal WMTs in α-Syn tg mouse brains. The loss of MOR expression is associated with degeneration of the myelinated axons that are localized within the corticostriatal WMTs. In brains affected with late stages of PD, we detect evidence confirming the degeneration of myelinated axons within the corticostriatal WMTs. We conclude that loss of corticostriatal MOR expression is associated with degeneration of corticostriatal WMT in α-Syn tg mice, modeling PD.


2021 ◽  
Author(s):  
Mikhail Pekker ◽  
Mikhail Shneider

A theoretical model of electrical synapses is proposed, in which connexons play the role of nails that hold unmyelinated areas of neurons at a distance of about 3.5 nm, and the electrical connection between them is provided by charging the membrane of an inactive neuron with currents generated in the intercellular electrolyte (saline) by the action potential in the active neuron. This mechanism is similar to the salutatory conduction of the action potential between the nodes of Ranvier in myelinated axons and the ephaptic coupling of sufficiently close spaced neurons.


2021 ◽  
Author(s):  
Ben-Zheng Li ◽  
Sio Hang Pun ◽  
Mang I Vai ◽  
Tim Lei ◽  
Achim Klug

Spatial hearing allows animals to rapidly detect and localize auditory events in the surrounding environment. The auditory brainstem plays a central role in processing and extracting binaural spatial cues through microsecond-precise binaural integration, especially for detecting interaural time differences (ITDs) of low-frequency sounds at the medial superior olive (MSO). A series of mechanisms exist in the underlying neural circuits for preserving accurate action potential timing across multiple fibers, synapses and nuclei along this pathway. One of these is the myelination of afferent fibers that ensures reliable and temporally precise action potential propagation in the axon. There are several reports of fine-tuned myelination patterns in the MSO circuit, but how specifically myelination influences the precision of sound localization remains incompletely understood. Here we present a spiking neural network model of the auditory brainstem with myelinated axons to investigate whether different axon myelination thicknesses alter the sound localization process. Our model demonstrates that axon myelin thickness along the contralateral pathways can substantially modulate ITD detection. Furthermore, optimal ITD sensitivity is reached when the MSO receives contralateral inhibition via thicker myelinated axons compared to contralateral excitation, a result that is consistent with previously reported experimental observations. Our results suggest specific roles of axon myelination for extracting temporal dynamics in ITD perception, especially in the pathway of the contralateral inhibition.


2021 ◽  
Vol 22 (17) ◽  
pp. 9473
Author(s):  
Megan Chesnut ◽  
Hélène Paschoud ◽  
Cendrine Repond ◽  
Lena Smirnova ◽  
Thomas Hartung ◽  
...  

Myelin is of vital importance to the central nervous system and its disruption is related to a large number of both neurodevelopmental and neurodegenerative diseases. The differences observed between human and rodent oligodendrocytes make animals inadequate for modeling these diseases. Although developing human in vitro models for oligodendrocytes and myelinated axons has been a great challenge, 3D cell cultures derived from iPSC are now available and able to partially reproduce the myelination process. We have previously developed a human iPSC-derived 3D brain organoid model (also called BrainSpheres) that contains a high percentage of myelinated axons and is highly reproducible. Here, we have further refined this technology by applying multiple readouts to study myelination disruption. Myelin was assessed by quantifying immunostaining/confocal microscopy of co-localized myelin basic protein (MBP) with neurofilament proteins as well as proteolipid protein 1 (PLP1). Levels of PLP1 were also assessed by Western blot. We identified compounds capable of inducing developmental neurotoxicity by disrupting myelin in a systematic review to evaluate the relevance of our BrainSphere model for the study of the myelination/demyelination processes. Results demonstrated that the positive reference compound (cuprizone) and two of the three potential myelin disruptors tested (Bisphenol A, Tris(1,3-dichloro-2-propyl) phosphate, but not methyl mercury) decreased myelination, while ibuprofen (negative control) had no effect. Here, we define a methodology that allows quantification of myelin disruption and provides reference compounds for chemical-induced myelin disruption.


2021 ◽  
Vol 118 (32) ◽  
pp. e2105795118
Author(s):  
Yunliang Zang ◽  
Eve Marder

Axons reliably conduct action potentials between neurons and/or other targets. Axons have widely variable diameters and can be myelinated or unmyelinated. Although the effect of these factors on propagation speed is well studied, how they constrain axonal resilience to high-frequency spiking is incompletely understood. Maximal firing frequencies range from ∼1 Hz to >300 Hz across neurons, but the process by which Na/K pumps counteract Na+ influx is slow, and the extent to which slow Na+ removal is compatible with high-frequency spiking is unclear. Modeling the process of Na+ removal shows that large-diameter axons are more resilient to high-frequency spikes than are small-diameter axons, because of their slow Na+ accumulation. In myelinated axons, the myelinated compartments between nodes of Ranvier act as a “reservoir” to slow Na+ accumulation and increase the reliability of axonal propagation. We now find that slowing the activation of K+ current can increase the Na+ influx rate, and the effect of minimizing the overlap between Na+ and K+ currents on spike propagation resilience depends on complex interactions among diameter, myelination, and the Na/K pump density. Our results suggest that, in neurons with different channel gating kinetic parameters, different strategies may be required to improve the reliability of axonal propagation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sarah Moyon ◽  
Rebecca Frawley ◽  
Damien Marechal ◽  
Dennis Huang ◽  
Katy L. H. Marshall-Phelps ◽  
...  

AbstractThe mechanisms regulating myelin repair in the adult central nervous system (CNS) are unclear. Here, we identify DNA hydroxymethylation, catalyzed by the Ten-Eleven-Translocation (TET) enzyme TET1, as necessary for myelin repair in young adults and defective in old mice. Constitutive and inducible oligodendrocyte lineage-specific ablation of Tet1 (but not of Tet2), recapitulate this age-related decline in repair of demyelinated lesions. DNA hydroxymethylation and transcriptomic analyses identify TET1-target in adult oligodendrocytes, as genes regulating neuro-glial communication, including the solute carrier (Slc) gene family. Among them, we show that the expression levels of the Na+/K+/Cl− transporter, SLC12A2, are higher in Tet1 overexpressing cells and lower in old or Tet1 knockout. Both aged mice and Tet1 mutants also present inefficient myelin repair and axo-myelinic swellings. Zebrafish mutants for slc12a2b also display swellings of CNS myelinated axons. Our findings suggest that TET1 is required for adult myelin repair and regulation of the axon-myelin interface.


Sign in / Sign up

Export Citation Format

Share Document