Arterioles supply oxygen to capillaries by diffusion as well as by convection

1990 ◽  
Vol 258 (4) ◽  
pp. H1240-H1243 ◽  
Author(s):  
M. L. Ellsworth ◽  
R. N. Pittman

In the early part of this century, August Krogh proposed a model of oxygen transport in capillaries that assumes that all oxygen is delivered to the capillaries by convection from small terminal arterioles and lost from these capillaries by diffusion. This model and its consequences have been used extensively to interpret whole organ oxygen transport data in terms of diffusion between capillaries and tissues and to relate changes in microvascular hemodynamics to alterations in oxygen transport. We evaluated the appropriateness of such extrapolation by measuring oxygen saturation at discrete locations along the lengths of individual capillaries in the hamster cheek pouch retractor muscle. Our results indicate that the amount of oxygen lost from individual capillaries can be markedly affected by the presence of larger microvessels that frequently cross the capillary path. These larger vessels act either as a diffusive supply of oxygen for the red blood cells within the capillary or as an additional sink for the oxygen depending on the direction of the oxygen tension gradient. This transfer of oxygen between larger microvessels and capillaries attenuates the importance of capillary hemodynamics in oxygen exchange. Therefore, conclusions about local oxygen exchange that utilize only hemodynamic data from whole organ or microvascular experiments and the Krogh model will generally be invalid and should be viewed with caution.

1987 ◽  
Vol 252 (5) ◽  
pp. H1031-H1040 ◽  
Author(s):  
M. L. Ellsworth ◽  
R. N. Pittman ◽  
C. G. Ellis

We present a computer-aided videodensitometric method for the determination of oxygen saturation in red blood cells flowing through capillaries of the hamster cheek pouch retractor muscle. The optical density (OD) of red blood cells is determined at two wavelengths. At the first, 431 nm, there is a maximum difference between absorption by oxygen deoxyhemoglobin. At the second, 420 nm, absorption is equal for the two absorbing species (isosbestic wavelength). In capillaries of the retractor muscle a relationship between oxygen saturation (S) and the following OD ratio was obtained as S = -1.71 (OD431/OD420) + 2.20. The error (95% confidence interval) in oxygen saturation associated with a determination of the OD ratio is estimated to be +/- 4.8%. The computerization of the method employs a frame-by-frame analysis of the light intensity over a selected capillary segment. The light intensity waveform along the segment is digitized and the minimum (I) and maximum (I0) light intensities are used to compute an optical density (OD = log10 [I0/I]). These minimum and maximum intensities correspond to the presence and absence of a red blood cell, respectively. The method permits the off-line analysis of videotaped scenes and provides a means of assessing the extent of temporal and spatial heterogeneity of oxygen saturation in selected capillary networks. The method has been developed for use in capillaries in transilluminated striated muscle but should be generally applicable to the measurement of capillary oxygen saturation in other tissues.


1990 ◽  
Vol 258 (4) ◽  
pp. H1216-H1223 ◽  
Author(s):  
C. G. Ellis ◽  
M. L. Ellsworth ◽  
R. N. Pittman

We have developed a new video microspectrophotometric system for the in vivo determination of oxygen saturation in red blood cells in striated muscle capillaries. This method allows one to quantify changes in the oxygenation of small groups of red blood cells as they traverse the capillary. Simultaneous images of a single microscopic field are recorded using two silicon-intensified target cameras and high-resolution video recorders. One image is recorded at an oxygen-dependent wave-length (431 nm) and the other at an isosbestic wavelength (420 nm). Light intensities from 10 adjacent pixels aligned along the axis of the capillary from identical 10-s segments of the video-tapes are digitized once per frame. Both sets of data are redisplayed simultaneously as two-dimensional images (10 pixels high x 300 frames wide) using a graphics system. These images show alternating bright and dark bands corresponding to plasma gaps and red blood cells. Light intensities in the presence and absence of red blood cells are determined by positioning a window over the appropriate region of the graphics image. Optical densities of single red blood cells at the two wavelengths, OD431 and OD420, are computed as is their ratio (OD431/OD420), which is linearly related to oxygen saturation. In vivo calibration studies in capillaries of the hamster retractor muscle indicate that the error in measuring oxygen saturation with this technique is approximately 2.7% saturation for a group of 10 cells.


1994 ◽  
Vol 267 (3) ◽  
pp. H1214-H1221 ◽  
Author(s):  
T. W. Secomb ◽  
R. Hsu

Theoretical simulations of oxygen transport in skeletal muscle are used to study the role of arterioles in oxygen delivery. A three-dimensional configuration of capillaries and arterioles in a cuboidal tissue region is simulated, based on observations of hamster cheek pouch retractor muscle. Equations describing convective and diffusive oxygen transport are solved using a Green's function method. In resting muscle, predicted oxygen saturation of capillary blood increases as it flows toward arterioles, and adjacent capillaries flowing in opposite directions show very similar variations in saturation. Diffusive oxygen loss from arterioles equals about 85% of consumption. Capillaries absorb much of this oxygen (equal to approximately 45% of consumption) and deliver it at downstream locations. Thus diffusive exchange between arterioles and capillaries plays an important part in distributing oxygen throughout the tissue. At higher flow and consumption rates, the relative amounts of oxygen diffusing out of arterioles and into capillaries decrease. The results are consistent with the hypothesis that oxygen content of arteriolar blood participates in metabolic regulation of blood flow.


1989 ◽  
Vol 256 (3) ◽  
pp. H921-H924 ◽  
Author(s):  
A. S. Popel ◽  
R. N. Pittman ◽  
M. L. Ellsworth

The experimental data on oxygen flux from arterioles in the hamster cheek pouch retractor muscle [L. Kuo and R. N. Pittman, Am. J. Physiol. 254 (Heart Circ. Physiol. 23): H331-H339, 1988] were analyzed under the assumption that the permeability to oxygen is the same in both perfused and unperfused tissue; permeability is defined as the product of the diffusion and solubility coefficients. However, our analysis indicated that the observed oxygen flux was inconsistent with this assumption and that permeability to oxygen of a blood-perfused tissue may be an order of magnitude higher than previously assumed.


2003 ◽  
Vol 285 (5) ◽  
pp. H1819-H1825 ◽  
Author(s):  
Kenneth A. Schenkman ◽  
Daniel A. Beard ◽  
Wayne A. Ciesielski ◽  
Eric O. Feigl

Myocardial mean myoglobin oxygen saturation was determined spectroscopically from isolated guinea pig hearts perfused with red blood cells during increasing hypoxia. These experiments were undertaken to compare intracellular myoglobin oxygen saturation in isolated hearts perfused with a modest concentration of red blood cells (5% hematocrit) with intracellular myoglobin saturation previously reported from traditional buffer-perfused hearts. Studies were performed at 37°C with hearts paced at 240 beats/min and a constant perfusion pressure of 80 cmH2O. It was found that during perfusion with a hematocrit of 5%, baseline mean myoglobin saturation was 93% compared with 72% during buffer perfusion. Mean myoglobin saturation, ventricular function, and oxygen consumption remained fairly constant for arterial perfusate oxygen tensions above 100 mmHg and then decreased precipitously below 100 mmHg. In contrast, mean myoglobin saturation, ventricular function, and oxygen consumption began to decrease even at high oxygen tension with buffer perfusion. The present results demonstrate that perfusion with 5% red blood cells in the perfusate increases the baseline mean myoglobin saturation and better preserves cardiac function at low oxygen tension relative to buffer perfusion. These results suggest that caution should be used in extrapolating intracellular oxygen dynamics from buffer-perfused to blood-perfused hearts.


Sign in / Sign up

Export Citation Format

Share Document