Delayed ischemic preconditioning is mediated by opening of ATP-sensitive potassium channels in the rabbit heart

1999 ◽  
Vol 276 (4) ◽  
pp. H1323-H1330 ◽  
Author(s):  
Nelson L. Bernardo ◽  
Michael D’Angelo ◽  
Shinji Okubo ◽  
Archi Joy ◽  
Rakesh C. Kukreja

Cardioprotection from preconditioning reappears 24 h after the initial stimulus. This phenomenon is called the second window of protection (SWOP). We hypothesized that opening of the ATP-sensitive potassium (KATP) channel mediates the protective effect of SWOP. Rabbits were preconditioned (PC) with four cycles of 5-min regional ischemia each followed by 10 min of reperfusion. Twenty-four hours later, the animals were subjected to sustained ischemia for 30 min followed by 180 min of reperfusion (I/R). Glibenclamide (Glib, 0.3 mg/kg ip) or 5-hydroxydecanoate (5-HD, 5 mg/kg iv) was used to block the KATP channel function. Infarct size was reduced from 41.2 ± 2.6% in sham-operated rabbits to 11.6 ± 1.0% in PC rabbits, a 71% reduction ( n = 11, P < 0.01). Treatment with Glib or 5-HD before I/R increased the infarct size to 43.4 ± 2.6 and 37.8 ± 1.9%, respectively ( P < 0.01 vs. PC group, n = 12/group). Sham animals treated with either Glib or 5-HD had an infarct size of 39.0 ± 3.4 and 37.8 ± 1.5%, respectively, which was not different from control (40.0 ± 3.8%) or sham (41.2 ± 2.6%) I/R hearts. Monophasic action potential duration (APD) at 50% repolarization significantly shortened by 28.7, 26.6, and 23.3% in sham animals during 10, 20, and 30 min of ischemia. However, no further augmentation in the shortening of APD was observed in PC hearts. Glib and 5-HD significantly suppressed ischemia-induced epicardial APD shortening, suggesting that 5-HD may not be a selective blocker of the mitochondrial KATP channel in vivo. We conclude that SWOP is mediated by a KATP channel-sensitive mechanism that may have occurred because of the opening of the sarcolemmal KATP channel in vivo.

1996 ◽  
Vol 270 (3) ◽  
pp. H1078-H1084 ◽  
Author(s):  
J. L. Ardell ◽  
X. M. Yang ◽  
B. A. Barron ◽  
J. M. Downey ◽  
M. V. Cohen

To determine whether endogenous cardiac catecholamines mediate ischemic preconditioning (PC) in the rabbit heart, myocardial catecholamines were depleted by reserpine (5 mg/kg, 18-24 h pre-PC) or surgical sympathectomy (2 wk pre-PC). In vivo hearts were subjected to 30 min of regional ischemia and 3 h of reperfusion. PC involved either one or four cycles of 5-min ischemia and 10-min reperfusion before the 30-min ischemic period. Right ventricular norepinephrine content (pmol/mg protein), 51.4 +/- 11.1 in untreated rabbits, was reduced to 0.6 +/- 0.2 and 1.8 +/- 0.5 by surgical sympathectomy and reserpine, respectively. Infarct size (IS) was measured by tetrazolium and expressed as percentage of the risk zone. In untreated animals exposed solely to 30 min of regional ischemia IS was 35.5 +/- 1.6% and was unchanged by reserpine (43.3 +/- 5.4%) or surgical sympathectomy (33.4 +/- 3.5%). compared with infarction in the respective non-PC controls, IS in untreated (7.4 +/- 1.5%, P < 0.0001) and surgically sympathectomized (11.2 +/- 1.5%, P < 0.0001) animals was significantly diminished by a single cycle of PC, but the latter exerted less protection in reserpinized animals (27.6 +/- 3.5%, P < 0.0025). Four cycles of PC, however, reduced IS to 10.3 +/- 1.2% in reserpinized animals. Therefore, despite comparable depression of myocardial norepinephrine content, surgical and chemical sympathectomy had different effects on the level of protection afforded by ischemic PC. These data demonstrate that endogenous myocardial catecholamines are not essential for protection from PC in the rabbit.


1998 ◽  
Vol 275 (4) ◽  
pp. H1329-H1337 ◽  
Author(s):  
Takayuki Miki ◽  
Tetsuji Miura ◽  
Rolf Bünger ◽  
Katsuo Suzuki ◽  
Jun Sakamoto ◽  
...  

This study tested the hypothesis that cardiac ecto-5′-nucleotidase (ecto-5′-NT) activity during ischemic preconditioning (PC) contributes to augmented tolerance against ischemia, thereby reducing infarct size in the rabbit heart in situ. The effects of α,β-methylene-adenosine diphosphate (AOPCP), a selective inhibitor of ecto-5′-NT, on cardiovascular responses to AMP were measured to establish in vivo activities of the enzyme and its inhibitor. Left atrial infusion of AOPCP (0.75 mg ⋅ kg−1⋅ min−1) raised AOPCP plasma levels to 138 μM; under these conditions negative chronotropic and inotropic effects of AMP were blocked, demonstrating essentially full inhibition of ecto-5′-NT in the heart in situ. This AOPCP-blocked heart in situ model was used to examine the proposed contribution of ecto-5′-NT in ischemic PC. Myocardial infarction caused by 30-min ischemia was followed by 3-h reperfusion. Infarct size (IS) was measured and expressed as a percentage of the size of the area at risk (%IS/AR). In untreated controls, %IS/AR was 38.1 ± 3.8%; PC (5-min ischemia, 5-min reperfusion) markedly reduced %IS/AR to 10.0 ± 2.0%. Essentially identical IS reductions by PC were observed in AOPCP-blocked animals (%IS/AR = 13.8 ± 2.2 and 13.3 ± 1.8% in rabbits receiving AOPCP at 0.75 and 1.50 mg ⋅ kg−1⋅ min−1, respectively); here plasma AOPCP levels were established before and during PC but not during the subsequent prolonged ischemia. As expected, AOPCP also did not affect %IS/AR in non-PC controls (%IS/AR = 35.5 ± 3.7%). In contrast but as predicted, adenosine-receptor blockade by 8-phenyltheophylline (10 mg/kg iv) substantially attenuated IS reduction by PC in both AOPCP-blocked and control hearts (%IS/AR = 25.2 ± 4.3 and 21.8 ± 2.2%, respectively; P < 0.05 vs. PC alone). The results demonstrate that cardiac ecto-5′-NT is not required for ischemic PC against infarction in the rabbit.


2004 ◽  
Vol 45 (6) ◽  
pp. 1007-1019 ◽  
Author(s):  
Kazuhito Hatanaka ◽  
Hiroyuki Kawata ◽  
Toshihiko Toyofuku ◽  
Ken-ichi Yoshida

1999 ◽  
Vol 276 (6) ◽  
pp. H2094-H2101 ◽  
Author(s):  
Weina Chen ◽  
Wayne Glasgow ◽  
Elizabeth Murphy ◽  
Charles Steenbergen

We tested the hypothesis that activation of the 12-lipoxygenase (12-LO) pathway of arachidonic acid metabolism contributes to the protective effect of protein kinase C (PKC) activation and ischemic preconditioning (PC), and we report, in perfused rat heart, that both PC and the PKC activator 1,2-dioctanoyl- sn-glycerol (DOG) confer a similar protective effect and stimulate a comparable accumulation of 12-LO metabolites. The 12-LO product, 12( S)-hydroxyeicosatetraenoic acid [12( S)-HETE], was increased in DOG-treated (22.8 ± 4.4 ng/g wet wt) and PC hearts (26.8 ± 5.5 ng/g wet wt) compared with control (13.8 ± 2.1 ng/g wet wt, P < 0.05), and this increase was blocked by 12-LO or PKC inhibitors. Both DOG pretreatment and PC improved recovery of left ventricular developed pressure (LVDP) nearly twofold after 20 min of ischemia; this improvement was blocked by 12-LO inhibitors and was mimicked by infusion of 12-hydroperoxyeicosatetraenoic acid [12( S)-HpETE; 67 ± 6% recovery of LVDP vs. 35 ± 3% for untreated hearts]. Also, the protection afforded by 12( S)-HpETE, as well as by PC, was attenuated by the K+-channel blocker 5-hydroxydecanoate, suggesting that the downstream mechanisms of 12( S)-HpETE-mediated protection are similar to PC. Furthermore, PC stimulates 12-LO metabolism in perfused rabbit heart, and 12-LO inhibition blocks PC-induced cardioprotection. Thus the data suggest that 12-LO metabolism plays an important role in cardioprotection.


1999 ◽  
Vol 276 (1) ◽  
pp. H224-H234 ◽  
Author(s):  
Yong-Zhen Qian ◽  
Nelson L. Bernardo ◽  
Mohammed A. Nayeem ◽  
Jeya Chelliah ◽  
Rakesh C. Kukreja

Ischemic preconditioning (PC) induces delayed phase of protection, known as the second window of protection (SWOP). We investigated this phenomenon in rat and correlated it with the expression of 72-kDa heat shock protein (HSP 72). Rats were preconditioned with 1, 2, and 3 cycles of 5-min left anterior descending artery occlusions, each separated by a 10-min reperfusion (PC × 1, PC × 2 and PC × 3, respectively). Another group of rats was preconditioned with heat shock (HS) by raising temperature to 42°C for 15 min. Twenty-four hours later, rats were given sustained ischemia for 30 min and 90 min of reperfusion. Infarct sizes (%risk area) were 40.0 ± 7.5, 37.6 ± 5.6, and 47.6 ± 2.4 (mean ± SE) for PC × 1, PC × 2, and PC × 3 hearts, respectively, which were not different from the sham (49.9 ± 3.9, P > 0.05). In contrast, infarct size was reduced from 47.5 ± 3.8% in sham to 4.7 ± 2.3% ( P < 0.01) 24 h after HS. Additionally, early PC significantly reduced infarct size from 47.5 ± 3.8% in controls to 6.0 ± 1.2 and 5.0 ± 1.1% with PC × 1 and PC × 3. Repeated PC cycles induced over a threefold increase in HSP 70 mRNA after 2 h compared with sham ( P < 0.05). HSP 72, which increased 24 h after PC or HS, was not significantly different between the two PC stimuli. We conclude that PC does not induce SWOP in rat heart despite enhanced expression of HSP 72. In contrast, HS-induced delayed protection was associated with enhanced accumulation of HSP 72. It is possible that SWOP and HS have distinct mechanisms of protection that may not be exclusively related to HSP 72 expression.


1997 ◽  
Vol 87 (2) ◽  
pp. 361-370 ◽  
Author(s):  
Judy R. Kersten ◽  
Todd J. Schmeling ◽  
Paul S. Pagel ◽  
Garrett J. Gross ◽  
David C. Warltier

Background The authors tested the hypothesis that isoflurane directly preconditions myocardium against infarction via activation of K(ATP) channels and that the protection afforded by isoflurane is associated with an acute memory phase similar to that of ischemic preconditioning. Methods Barbiturate-anesthetized dogs (n = 71) were instrumented for measurement of systemic hemodynamics. Myocardial infarct size was assessed by triphenyltetrazolium chloride staining. All dogs were subjected to a single prolonged (60 min) left anterior descending coronary artery (LAD) occlusion followed by 3 h of reperfusion. Ischemic preconditioning was produced by four 5-min LAD occlusions interspersed with 5-min periods of reperfusion before the prolonged LAD occlusion and reperfusion. The actions of isoflurane to decrease infarct size were examined in dogs receiving 1 minimum alveolar concentration (MAC) isoflurane that was discontinued 5 min before prolonged LAD occlusion. The interaction between isoflurane and ischemic preconditioning on infarct size was evaluated in dogs receiving isoflurane before and during preconditioning LAD occlusions and reperfusions. To test whether the cardioprotection produced by isoflurane can mimic the acute memory of ischemic preconditioning, isoflurane was discontinued 30 min before prolonged LAD occlusion and reperfusion. The mechanism of isoflurane-induced cardioprotection was evaluated in two final groups of dogs pretreated with glyburide in the presence or absence of isoflurane. Results Myocardial infarct size was 25.3 +/- 2.9% of the area at risk during control conditions. Isoflurane and ischemic preconditioning produced significant (P &lt; 0.05) and equivalent reductions in infarct size (ischemic preconditioning alone, 9.6 +/- 2.0; isoflurane alone, 11.8 +/- 2.7; isoflurane and ischemic preconditioning, 5.1 +/- 1.9%). Isoflurane-induced reduction of infarct size also persisted 30 min after discontinuation of the anesthetic (13.9 +/- 1.5%), independent of hemodynamic effects during LAD occlusion. Glyburide alone had no effect on infarct size (28.3 +/- 3.9%), but it abolished the protective effects of isoflurane (27.1 +/- 4.6%). Conclusions Isoflurane directly preconditions myocardium against infarction via activation of K(ATP) channels in the absence of hemodynamic effects and exhibits acute memory of preconditioning in vivo.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Donald A. Vessey ◽  
Luyi Li ◽  
Zhu-Qiu Jin ◽  
Michael Kelley ◽  
Norman Honbo ◽  
...  

Sphingosine kinase (SphK) exhibits two isoforms, SphK1 and SphK2. Both forms catalyze the synthesis of sphingosine 1-phosphate (S1P), a sphingolipid involved in ischemic preconditioning (IPC). Since the ratio of SphK1 : SphK2 changes dramatically with aging, it is important to assess the role of SphK2 in IR injury and IPC. Langendorff mouse hearts were subjected to IR (30 min equilibration, 50 min global ischemia, and 40 min reperfusion). IPC consisted of 2 min of ischemia and 2 min of reperfusion for two cycles. At baseline, there were no differences in left ventricular developed pressure (LVDP), ± dP/dtmax, and heart rate between SphK2 null (KO) and wild-type (WT) hearts. In KO hearts, SphK2 activity was undetectable, and SphK1 activity was unchanged compared to WT. Total SphK activity was reduced by 53%. SphK2 KO hearts subjected to IR exhibited significantly more cardiac damage (% infarct size) compared with WT (% infarct size); postischemic recovery of LVDP was lower in KO hearts. IPC exerted cardioprotection in WT hearts. The protective effect of IPC against IR was diminished in KO hearts which had much higher infarction sizes (%) compared to the IPC/IR group in control hearts (%). Western analysis revealed that KO hearts had substantial levels of phosphorylated p38 which could predispose the heart to IR injury. Thus, deletion of the SphK2 gene sensitizes the myocardium to IR injury and diminishes the protective effect of IPC.


Sign in / Sign up

Export Citation Format

Share Document