Rapid tachyphylaxis to hemodynamic effects of PACAP-27 after inhibition of nitric oxide synthesis

1999 ◽  
Vol 276 (6) ◽  
pp. H2117-H2126 ◽  
Author(s):  
Erin J. Whalen ◽  
Mark D. Travis ◽  
Alan Kim Johnson ◽  
Stephen J. Lewis

The vasodilator effects of pituitary adenylate cyclase-activating polypeptide (PACAP)-27 are subject to tachyphylaxis in rats treated with the nitric oxide (NO) synthase inhibitor N G-nitro-l-arginine methyl ester (l-NAME). We examined whether this tachyphylaxis could be prevented by administration of the putative endothelium-derived nitrosyl factor S-nitroso-l-cysteine (l-SNC) and whetherl-SNC may exert its effects via increases in cGMP levels in vascular smooth muscle. Five doses of PACAP-27 (2 nmol/kg iv) produced pronounced vasodilator responses in saline-treated rats. These responses were not subject to tachyphylaxis. The first injection of PACAP-27 (2 nmol/kg iv) inl-NAME-treated (50 μmol/kg iv) rats produced vasodilator responses similar to those in saline-treated rats, whereas subsequent injections produced progressively smaller responses. The injection ofl-SNC (1,200 nmol/kg iv) before each injection of PACAP-27 prevented tachyphylaxis to the Gs protein-coupled receptor agonist in l-NAME-treated rats, whereas equihypotensive doses of the NO donor sodium nitroprusside (100 μg/kg iv) did not. The injection of the membrane-permeant cGMP analog 8-(4-chlorophenylthio)guanosine 3′,5′-cyclic monophosphate (8-CPT-cGMP; 30 μmol/kg iv) tol-NAME-treated rats restored resting hemodynamic values to pre-l-NAME levels but did not prevent the development of tachyphylaxis to PACAP-27. These results suggest that nitrosyl factors prevent the development of tachyphylaxis to the hemodynamic actions of PACAP-27. These nitrosyl factors may act independently of their ability to generate cGMP in vascular smooth muscle.

2016 ◽  
Vol 310 (8) ◽  
pp. F755-F762 ◽  
Author(s):  
Peng Wu ◽  
Zhongxiuzi Gao ◽  
Shiwei Ye ◽  
Zhi Qi

We used patch-clamp techniques to examine whether nitric oxide (NO) decreases NaCl reabsorption by suppressing basolateral 10-pS Cl− channels in the thick ascending limb (TAL). Both the NO synthase substrate l-arginine (l-Arg) and the NO donor S-nitroso- N-acetylpenicillamine significantly inhibited 10-pS Cl− channel activity in the TAL. The inhibitory effect of l-Arg on Cl− channels was completely abolished in the presence of the NO synthase inhibitor or NO scavenger. Moreover, inhibition of soluble guanylyl cyclase abrogated the effect of l-Arg on Cl− channels, whereas the cGMP analog 8-bromo-cGMP (8-BrcGMP) mimicked the effect of l-Arg and significantly decreased 10-pS Cl− channel activity, indicating that NO inhibits basolateral Cl− channels by increasing cGMP production. Furthermore, treatment of the TAL with a PKG inhibitor blocked the effect of l-Arg and 8-BrcGMP on Cl− channels, respectively. In contrast, a phosphodiesterase 2 inhibitor had no significant effect on l-Arg or 8-BrcGMP-induced inhibition of Cl− channels. Therefore, we conclude that NO decreases basolateral 10-pS Cl− channel activity through a cGMP-dependent PKG pathway, which may contribute to the natriuretic and diuretic effects of NO in vivo.


2010 ◽  
Vol 298 (1) ◽  
pp. H144-H151 ◽  
Author(s):  
Susan K. Fellner ◽  
William J. Arendshorst

Little is known about the effects of nitric oxide (NO) and the cyclic GMP (cGMP)/protein kinase G (PKG) system on Ca2+ signaling in vascular smooth muscle cells (VSMC) of resistance vessels in general and afferent arterioles in particular. We tested the hypotheses that cGMP-, Ca2+-dependent big potassium channels (BKCa2+) buffer the Ca2+ response to depolarization by high extracellular KCl and that NO inhibits adenosine diphosphoribose (ADPR) cyclase, thereby reducing the Ca2+-induced Ca2+ release. We isolated rat afferent arterioles, utilizing the magnetized microsphere method, and measured cytosolic Ca2+ concentration ([Ca2+]i) with fura-2, a preparation in which endothelial cells do not participate in [Ca2+]i responses. KCl (50 mM)-induced depolarization causes an immediate increase in [Ca2+]i of 151 nM. The blockers Nω-nitro-l-arginine methyl ester (of nitric oxide synthase), 1,2,4-oxodiazolo-[4,3- a]quinoxalin-1-one (ODQ, of guanylyl cyclase), KT-5823 (of PKG activation), and iberiotoxin (IBX, of BKCa2+ activity) do not alter the [Ca2+]i response to KCl, suggesting no discernible endogenous NO production under basal conditions. The NO donor sodium nitroprusside (SNP) reduces the [Ca2+]i response to 77 nM; IBX restores the response to control values. These data show that activation of BKCa2+ in the presence of NO/cGMP provides a brake on KCl-induced [Ca2+]i responses. Experiments with the inhibitor of cyclic ADPR 8-bromo-cyclic ADPR (8-Br-cADPR) and SNP + downstream inhibitors of PKG and BKCa2+ suggest that NO inhibits ADPR cyclase in intact arterioles. When we pretreat afferent arterioles with 8-bromoguanosine 3′,5′-cyclic monophosphate (8-Br-cGMP; 10 μM), the response to KCl is 143 nM. However, in the presence of both IBX and 8-Br-cGMP, we observe a surprising doubling of the [Ca2+]i response to KCl. In summary, we present evidence for effects of the NO/cGMP/PKG system to reduce [Ca2+]i, via activation of BKCa2+ and possibly by inhibition of ADPR cyclase, and to increase [Ca2+]i, by a mechanism(s) yet to be defined.


1995 ◽  
Vol 268 (2) ◽  
pp. G207-G214 ◽  
Author(s):  
A. Rodriguez-Membrilla ◽  
V. Martinez ◽  
M. Jimenez ◽  
E. Gonalons ◽  
P. Vergara

The main objective was to study the role of nitric oxide (NO) in the conversion of migrating myoelectric complexes (MMC) to the irregular electrical activity characteristic of the postprandial state. Both rats and chickens were implanted with electrodes for electromyography in the small intestine. Intravenous infusion of NG-nitro-L-arginine (L-NNA), a NO synthase inhibitor, induced an organized MMC-like pattern in fed rats. Infusion of sodium nitroprusside, a NO donor, disrupted the MMC, inducing a postprandial-like motor pattern in fasting rats. Similarly, in chickens L-NNA mimicked the fasting pattern, consisting of a shortening of phase II, enlargement of phase III, orad displacement of the origin of the MMC, and an increase in the speed of phase III propagation. An inhibition of NO synthesis seems to be involved in the induction of the fasting motor pattern, whereas an increase of NO mediates the occurrence of the fed pattern. It is suggested that NO might be the final mediator in the control of small intestine motor patterns.


Shock ◽  
1996 ◽  
Vol 5 ◽  
pp. 57
Author(s):  
B. G. Harbrecht ◽  
L. Shears ◽  
B. Pitt ◽  
T. R. Billiar

1995 ◽  
Vol 268 (5) ◽  
pp. F953-F959 ◽  
Author(s):  
X. R. He ◽  
S. G. Greenberg ◽  
J. P. Briggs ◽  
J. B. Schnermann

To examine the possible role of NO in macula densa control of renin secretion, we examined the effects of varying NO availability on renin release in the isolated perfused rabbit juxtaglomerular apparatus (JGA). Gradual increments of luminal Na/Cl concentration ratio (mM/mM) from 26/7 over 46/27, 66/47, to 86/67 caused a progressive decrease in renin secretion from (as log of nano-Goldblatt hog units vs. time, i.e., log nGU/min) 1.09 +/- 0.34 to 0.46 +/- 0.24 log nGU/min, with the greatest change occurring at the first concentration step. The presence of 0.7 mM N omega-nitro-L-arginine (NNA), an NO synthase inhibitor, in the luminal fluid significantly reduced renin secretion at the lowest Na/Cl concentration ratio to 0.65 +/- 0.32 log nGU/min (P < 0.01 compared with control). Renin secretion at the higher Na/Cl concentration ratios was not significantly affected by NNA compared with control. In contrast to these results, the addition of the NO donor nitroprusside (1 mM) to the bath caused a reduction in renin secretion from 1.0 +/- 0.39 to 0.47 +/- 0.46 log nGU/min (P < 0.05), an effect that was reversed by bath addition of 0.01 mM methylene blue. Similarly, addition of L-arginine (0.7 mM) to the bath reduced renin secretion from 0.99 +/- 0.37 to 0.81 +/- 0.38 log nGU/min (P < 0.01), whereas addition of L-arginine to the luminal fluid increased renin secretion from 0.85 +/- 0.43 to 1.94 +/- 0.46 log nGU/min (P < 0.05). The stimulatory effect of luminal L-arginine was reversed by the luminal addition of NNA.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document